ENERGIEARMUT IN ÖSTERREICH

Haushaltsenergie und Einkommen

Mikrozensus Energie und EU-SILC – Statistical Matching

Herausgegeben von STATISTIK AUSTRIA

Wien 2019
Auskünfte
Für schriftliche oder telefonische Anfragen steht Ihnen in der Statistik Austria der Allgemeine Auskunftsdienst unter der Adresse
Guglgasse 13
1110 Wien
Tel.: +43 (1) 711 28-7070
e-mail: info@statistik.gv.at
Fax: +43 (1) 771128-7728
zur Verfügung.

Studie im Auftrag von E-Control Austria
Rudolfsplatz 13a
1010 Wien

Herausgeber und Hersteller
STATISTIK AUSTRIA
Bundesanstalt Statistik Österreich
1110 Wien
Guglgasse 13

Für den Inhalt verantwortlich
Dr. Walter Hyll
Tel.: +43 (1) 711 28-7334
e-mail: walter.hyll@statistik.gv.at
Mag. Alexandra Wegscheider-Pichler
Tel.: +43 (1) 711 28-7916
e-mail: alexandra.wegscheider-pichler@statistik.gv.at
Methodik
DI Dr. Alexander Kowarik
Tel.: +43 (1) 711 28-7513
e-mail: alexander.kowarik@statistik.gv.at
Layout
Waltraud Unger

Umschlagfoto
©Brilliant Eye - stock.adobe.com

ISBN 978-3-903264-10-6

Die Bundesanstalt Statistik Österreich sowie alle Mitwirkenden an der Publikation haben deren Inhalte sorgfältig recherchiert und erstellt. Fehler können dennoch nicht gänzlich ausgeschlossen werden. Die Genannten übernehmen daher keine Haftung für die Richtigkeit, Vollständigkeit und Aktualität der Inhalte, insbesondere übernehmen sie keinerlei Haftung für eventuelle unmittelbare oder mittelbare Schäden, die durch die direkte oder indirekte Nutzung der angebotenen Inhalte entstehen. Korrekturhinweise senden Sie bitte an die Redaktion.

© STATISTIK AUSTRIA

Artikelnummer: 20-9920-17
Verkaufspreis: € 19,00

Wien 2019
Vorwort

Dr. Konrad Pesendorfer
Fachstatistischer Generaldirektor der STATISTIK AUSTRIA

Wien, im März 2019
Inhaltsverzeichnis

Zusammenfassung der Ergebnisse ... 9

1 Einleitung und Hintergrund .. 13

2 Aspekte der Energiearmut .. 15
 2.1 Definitionen von Energiearmut ... 17
 2.1.1 Armutsgefährdung ... 18
 2.1.2 Überdurchschnittlich hohe Energiekosten 19

3 Energiearmut .. 20
 3.1 Struktur der energiearmen Haushalte ... 21
 3.2 Energieverbrauch und Energiekosten .. 24
 3.3 Energieverbrauchskategorien .. 24
 3.4 Energieträgermix ... 25

4 Energieverbrauch und Energiekosten .. 27
 4.1 Energieverbrauch und Energiekosten insgesamt 27
 4.1.1 Energieverbrauch insgesamt ... 28
 4.1.2 Energiekosten insgesamt ... 30
 4.1.3 Relative Energiekosten ... 32
 4.1.4 Gesamtzusammenhang Energiekosten 33
 4.2 Stromverbrauch und Stromkosten ... 33
 4.2.1 Stromverbrauch der Haushalte ... 35
 4.2.2 Stromkosten der Haushalte ... 36
 4.2.3 Relative Stromkosten ... 38
 4.2.4 Gesamtzusammenhang Stromkosten 39
 4.3 Naturgas ... 39
 4.3.1 Naturgasverbrauch der Haushalte 40
 4.3.2 Naturgaskosten der Haushalte .. 42
 4.3.3 Relative Erdgaskosten .. 44
 4.3.4 Gesamtzusammenhang Erdgaskosten 45

5 Datenhintergrund und Methodik .. 46
 5.1 Mikrozensus Sonderprogramm Energieeinsatz der Haushalte 2015/2016 46
 5.2 EU-SILC Statistics on Income and Living Conditions 47
 5.3 Mikrozensus Arbeitskräfte- und Wohnungserhebung 2016 47
 5.4 Verwendete Einkommensvariablen .. 48
 5.4.1 Gesamtes verfügbares Haushaltseinkommen laut EU-SILC 49
 5.4.2 Äquivalisiertes Nettohaushaltseinkommen 50
5.5 Informationen zur deskriptiven Darstellung ... 50
 5.5.1 Betrachtete Einkommensgruppen ... 50
 5.5.2 Interpretation der ausgewiesenen Signifikanzniveaus .. 50
 5.5.3 Verwendetes Hochrechnungsgewicht ... 51
5.6 „Statistical Matching“ ... 51
 5.6.1 Variablenauswahl und Abgleich .. 52
 5.6.2 Vorgehen statistical Matching .. 54
 5.6.3 Datenevaluation ... 54
6 Literaturverzeichnis ... 56

Grafiken
Grafik 2.1 Agenda 2030 – Ziel 7 ... 15
Grafik 2.2 Anteil der Personen, die es sich nicht leisten können, die Wohnung angemessen warm zu halten .. 16
Grafik 3.1 Haushaltseinkommen und Äquivalenzeinkommen nach Energiearmut 21
Grafik 3.2 Energiekosten nach Energiearmut .. 21
Grafik 3.3 Höchste abgeschlossene Schulbildung nach Energiearmut 22
Grafik 3.4 Haushaltsgröße nach Energiearmut ... 22
Grafik 3.5 Alter nach Energiearmut ... 22
Grafik 3.6 Kinder im Haushalt nach Energiearmut .. 23
Grafik 3.7 Nutzfläche nach Energiearmut .. 23
Grafik 3.8 Rechtsverhältnis nach Energiearmut ... 23
Grafik 3.9 Gebäudealter nach Energiearmut ... 23
Grafik 3.10 Anteil der Energiekosten am Haushaltseinkommen .. 24
Grafik 3.11 Anteil der Stromkosten am Haushaltseinkommen .. 24
Grafik 3.12 Energieverbrauch für Verbrauchskategorien ... 25
Grafik 3.13 Verbrauchskategorien der Haushalte nach den Anteilen der Energiemengen 25
Grafik 3.14 Energieträgermix der Haushalte nach den Anteilen der Energiemengen 25
Grafik 3.15 Energieträgermix der Haushalte nach den Anteilen der Energiemengen 26
Grafik 4.1 Jährlicher Gesamtenergieverbrauch nach Haushaltseinkommensgruppen 28
Grafik 4.2 Jährlicher Gesamtenergieverbrauch nach Haushaltsgröße 29
Grafik 4.3 Jährlicher Gesamtenergieverbrauch nach Äquivalenzeinkommen, Armutsgefährdung und Energiearmut ... 29
Grafik 4.4 Jährlicher Gesamtenergieverbrauch nach Nutzfläche der Wohnung 29
Grafik 4.5 Jährlicher Gesamtenergieverbrauch nach Gebäudegröße, Rechtsverhältnis und Baujahr 30
Grafik 4.6 Jährlicher Gesamtenergieverbrauch von Gebäuden mit 1 bis 2 Wohnungen nach Haushaltseinkommensgruppen ... 30
Grafik 4.7 Jährliche Gesamtenergiekosten nach Haushaltseinkommensgruppen 31
Grafik 4.8 Jährliche Gesamtenergiekosten nach Haushaltsgröße 31
Grafik 4.9 Jährliche Gesamtenergiekosten nach Äquivalenzeinkommen, Armutsgefährdung und Energiearmut ... 31
Grafik 4.10 Jährliche Gesamtenergiekosten nach Nutzfläche der Wohnung 31
Grafik 4.11 Jährliche Gesamtenergiekosten nach Gebäudegröße und Rechtsverhältnis 32
Grafik 4.12 Jährliche Gesamtenergiekosten von Gebäuden mit 1 bis 2 Wohnungen nach Haushaltseinkommensgruppen ... 32
Grafik 4.13 Anteil der Gesamtenergiekosten am Haushaltseinkommen nach Haushaltseinkommensgruppen ... 32
Grafik 4.14 Anteil der Gesamtenergiekosten am Haushaltseinkommen nach Armutsgefährdung und Energiearmut ... 33
Grafik 4.15 Jahresstromverbrauch nach Haushaltseinkommensgruppen 35
Grafik 4.16 Jahresstromverbrauch nach Haushaltsgröße ... 35

6 Literaturverzeichnis ... 56
Übersichten

Übersicht 1	Gegenüberstellung Energiearmut 2013 / 2014 zu 2015 / 2016	10
Übersicht 3.1	Gegenüberstellung Energieverbrauch und Kosten 2013/2014 zu 2015/2016	26
Übersicht 3.2	Gegenüberstellung Stromverbrauch und Kosten 2013/2014 zu 2015/2016	26
Übersicht 4.1	Korrelation diverser Variablen mit Energieverbrauch und Energiekosten insgesamt	28
Übersicht 4.2	Multivariate Regressionsanalyse zu den Gesamtenergiekosten	33
Übersicht 4.3	Korrelation diverser Variablen mit Stromverbrauch und Stromkosten insgesamt	34
Übersicht 4.4	Multivariate Regressionsanalyse zu den Gesamtenergiekosten	39
Übersicht 4.5	Korrelation diverser Variablen mit Erdgasverbrauch und Erdgaskosten insgesamt	40
Übersicht 4.6	Multivariate Regressionsanalyse zu den Gesamtenergiekosten	45
Übersicht 5.1	Überblick Einkommensvariablen aus Verwaltungsdaten und Direktbefragung	49
Übersicht 5.2	Gesamtemnergieverbrauch 2015/16 nach Energieträgern – Vergleich nach Hochrechnungsgewichten	51
Übersicht 5.3	Merkmalsausprägung der Verknüpfungsvariablen (ohne Verwaltungsdaten)	53
Zusammenfassung der Ergebnisse

Bei Energiearmut geht es um die (Nicht-) Leistbarkeit von Energie, was insbesondere für Haushalte mit niedrigem Einkommen – wie armutsgefährdete Haushalte – von Relevanz ist.

Für die Definition von Energiearmut in Österreich wurde wieder der Bericht der Energie-Control Austria (E-Control, 2013) herangezogen: „Als energiearm sollen jene Haushalte gelten, die über ein Einkommen unter der Armutsgefährdungsschwelle verfügen aber gleichzeitig überdurchschnittlich hohe Energiekosten zu begleichen haben.“

Energiearme Haushalte

Zwischen energiearmen und nicht-energiearmen Haushalten bestehen zahlreiche strukturelle Unterschiede. Auch beim Energieverbrauch und bei den Energiekosten lassen sich – per Definition – signifikante Unterschiede feststellen. Die Zusammensetzung der verwendeten Energiemärker von energiearmen Haushalten weicht ebenso von nicht-energiearmen ab (Kapitel 3).

Struktur der energiearmen Haushalte

Durchschnittlich sind 3,1% aller Haushalte energiearm. Haushalte mit höchstens Pflichtschulabschluss sind zu 6,6% von Energiearmut betroffen.

Der Anteil der „Pflichtschule“ (32%) als höchster abgeschlossener Schulbildung ist bei energiearmen Haushalten deutlich höher als bei nicht-energiearmen Haushalten (14%). Rund 33% der nicht-energiearmen Haushalte verfügen dagegen über zumindest Matura im Gegensatz zu 25% der energiearmen Haushalte.

In 61% der energiearmen Haushalte lebt nur eine Person, während der Vergleichswert für nicht-energiearme Haushalte 35% beträgt. Dies liegt auch daran, dass die Energiekosten der energiearmen Haushalte äquivalisiert wurden.

Rund 44% der energiearmen Haushalte leben in Gebäuden die bis 1960 erbaut wurden, dies betrifft nur 29% der nicht-energiearmen Haushalte. Dementsprechend sind Haushalte in Gebäuden bis 1960...
überdurchschnittlich häufig (5%) von Energiearmut betroffen. Bewohner von Gebäuden, die ab 1991 erbaut wurden, sind dagegen nur zu 1% energiearm.

Energiearme und Energieverbrauch, Energiekosten

Während durchschnittlich 4,2% des Einkommens für Energiekosten für Wohnen verwendet werden, müssen energiearme Haushalte knapp das Fünffache – nämlich rund 20% ihres gesamten verfügbaren Einkommens für Energie aufwenden. Die Vergleichsgruppe der nicht-energiearmen Haushalte kommt auf einen Wert von 4,0%.

Während der Durchschnittshaushalt knapp 4.400 kWh Strom benötigt und dafür knapp 850 Euro jährlich bezahlt, verbrauchen energiearme Haushalte knapp 5.660 kWh Strom, bei jährlichen Kosten von rund 1.170 Euro. Der Anteil der Stromkosten am gesamten verfügbaren Haushaltsinkommen liegt für energiearme Haushalte bei über 9%. Die Vergleichsgruppe der nicht-energiearmen Haushalte wendet 2,0% ihres Haushaltseinkommens für ihre Stromkosten auf.

Energieverbrauchskategorien der energiearmen Haushalte

Energiearme Haushalte nutzen rund 17.340 kWh für Heizzwecke, nicht-energiearme Haushalte 11.400 kWh (Grafik 2.11). Für Warmwasser setzen energiearme Haushalte dagegen nur 2.300 kWh ein, nicht-energiearme Haushalte kommen auf 2.830 kWh. Der Verbrauch der energiearmen Haushalte für Heiz- zen liegt damit zu über 50% über dem der Vergleichsgruppe. Für Warmwasser wird dagegen um 19% weniger Energie aufgewendet, für Kochen um 3% weniger. Für sonstige Zwecke wird um 20% mehr Energie verbraucht als von nicht-energiearmen Haushalten.

Energieträgermix der energiearmen Haushalte

Energiearme Haushalte nutzen als Energieträger vor allem Diesel (42%), Erdgas (36%) und Warmwasser (14%), nicht-energiearme Haushalte dagegen vor allem Strom (42%), Erdgas (36%) und Brennholz (14%). Die Energiekosten von energiearmen Haushalten belaufen sich auf durchschnittlich 2.530 Euro pro Jahr, nicht-energiearme Haushalte auf 1.790 Euro pro Jahr.

Ergebnisvergleich Mikrozensus Energie 2013/2014 zu 2015/2016

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Energiearme Haushalte</td>
<td>%</td>
</tr>
<tr>
<td>Anzahl</td>
<td>116.900</td>
</tr>
<tr>
<td>Armutsgefährdungsschwere</td>
<td>Euro</td>
</tr>
<tr>
<td>Energiekostenschwere</td>
<td>Euro</td>
</tr>
</tbody>
</table>

Q: STATISTIK AUSTRIA. Die Energiekostenschwere bezeichnet die Höhe der äquivalisierter Energiekosten, ab der man, bei gleichzeiti-

ger Armutsgefährdung, laut Definition als „Energiearm“ gilt.

Im Zeitverlauf ergaben sich leichte Rückgänge für Energieverbrauch und absolute Energiekosten. Dies betrifft sowohl die Haushalte insgesamt, als auch die energiearmen Haushalte. Das Verhältnis Haushalte insgesamt zu energiearmen Haushalten blieb dabei beinahe ident.

Die von 2013/2014 auf 2015/2016 sinkenden Ener-
giekosten führten mit den zeitgleich durchschnittlich ansteigenden Haushaltsinkommen zu einem Rückgang der relativen Energiekosten, sowohl für die Haushalte insgesamt (von 4,6% auf 4,2%) als auch für die energiearmen Haushalte (von 22,8% auf 20,0%).

Energieverbrauch und Energiekosten aller Haushalte

Nach den betrachteten Einkommensgruppen gibt es deutliche Unterschiede in der Höhe des Energieverbrauchs und der Energiekosten insgesamt sowie bezüglich der einzelnen Energieträger (Kapitel 4):

Energieverbrauch und Energiekosten insgesamt

Der durchschnittliche Energieverbrauch von Haushalten mit niedrigem Haushaltsinkommen ist mit 14.103
kWh deutlich geringer als jener von Haushalten mit mittlerem (17.403 kWh) oder hohem Haushaltseinkommen (21.272 kWh).

Bezieht man die Haushaltsgröße durch die Betrachtung des Äquivalenzeinkommens mit ein, so zeigt sich, dass die Unterschiede im Energieverbrauch signifikant bleiben: Haushalte mit niedrigem Äquivalenzeinkommen verbrauchen jährlich rund 17.223 kWh Energie, die mittlere Gruppe rund 16.878 kWh. Haushalte mit hohem Äquivalenzeinkommen verbrauchen jährlich knapp 18.264 kWh. Armutsgefährdete Haushalte (knapp 17.325 kWh) haben einen unterdurchschnittlichen Energieverbrauch, energiearme Haushalte mit 23.170 kWh einen definitionsgemäß überdurchschnittlichen.

Durchschnittlich wenden Haushalte 4,2% ihres Haushaltseinkommens für Energiekosten für Wohnen (Warmwasser, Heizen etc.) auf. Haushalte mit niedrigem Haushaltseinkommen geben durchschnittlich rund 7,9% ihres Einkommens für Energie für Wohnen aus, Haushalte mit mittelarem Einkommen 4,7% und Haushalte mit hohem Einkommen 2,8%.

Armutsgefährdete Haushalte geben im Durchschnitt 11,2% ihres Einkommens für Energie und für Wohnen aus, energiearme Haushalte dagegen 20%.

Eine multivariate Regressionsanalyse zeigt, dass der Einfluss des Einkommens auf die Energiekosten über alle anderen energieverbrauchsrelevanten Variablen hinweg signifikant ist. Die Annahme „Je höher das verfügbare Einkommen einer Person ist, desto höher sind ihre Energiekosten“ kann daher auch durch die Regressionsanalyse bestätigt werden.

Stromverbrauch und Stromkosten

Die Einkommensgruppen nach dem Haushaltseinkommen zeigen signifikante Unterschiede nach dem Stromverbrauch, bei Haushalten mit niedrigem Haushaltseinkommen ist er deutlich geringer als bei Haushalten mit mittlerem und hohem Haushaltseinkommen. Während erstere im Durchschnitt rund 3.622 kWh Strom pro Jahr benötigen, verbrauchen Haushalte mit mittlerem Haushaltseinkommen 4.429 kWh, die Gruppe der hohen Einkommen kommt auf 5.174 kWh.

Bezieht man durch die Betrachtung der Äquivalenz einkommen die Haushaltsgröße mit ein, sind die Unterschiede nach dem Energieverbrauch jedoch nicht statistisch signifikant.

Nach dem Äquivalenzeinkommen, sind die Stromkosten nach den Terzilen sowie jene für armutsgefährdete Haushalte nicht signifikant unterschiedlich. Energiearme Haushalte weisen definitionsgemäß deutlich überdurchschnittliche Kosten von 1.166 Euro aus.

Relativ betrachtet geben Haushalte in Österreich durchschnittlich 2% ihres gesamten verwendbaren Haushaltseinkommens für Strom aus. Dabei verwenden Haushalte mit niedrigem Haushaltseinkommen durchschnittlich rund 3,7% ihres Einkommens für elektrischen Strom, Haushalte mit mittlerem Einkommen rund 2,2% und Haushalte mit hohem Einkommen rund 1,3%.

Armutsgefährdete Haushalte geben im Durchschnitt 5,5% ihres Einkommens für elektrischen Strom aus, energiearme Haushalte 9,2%.

Eine multivariate Regressionsanalyse bestätigt, dass der Einfluss des Einkommens auf die Stromkosten über alle anderen energieverbrauchsrelevanten Variablen hinweg schwach signifikant ist. Die Annahme „Je höher das verfügbare Einkommen einer Person ist, desto höher sind ihre jährlichen Stromkos-
ten“ kann daher durch die Regressionsanalyse bestätigt werden.

Naturgasverbrauch und Naturgaskosten

Bei Haushalten mit niedrigem Haushaltseinkommen ist der Erdgasverbrauch deutlich geringer als bei Haushalten mit mittlerem und hohem Haushaltseinkommen. Während erstere im Durchschnitt rund 9.583 kWh Erdgas pro Jahr benötigen, verbrauchen Haushalte mit mittlerem Haushaltseinkommen 11.468 kWh, die Gruppe der hohen Einkommen kommt auf 13.330 kWh.

Bezieht man durch die Betrachtung der Äquivalenzeinkommen die Haushaltsgröße wieder mit ein, bleiben die Unterschiede statistisch signifikant, wenn auch mit geringeren Differenzen.

Haushalte mit niedrigem Haushaltseinkommen geben durchschnittlich rund 3,8% ihres Einkommens für Erdgas, Haushalte mit mittlerem Einkommen rund 2,3% und Haushalte mit hohem Einkommen rund 1,4% aus. Armutsgefährdete Haushalte geben im Durchschnitt 6% ihres Einkommens für Erdgas aus energiearme Haushalte 14,1%.

Im Rahmen der multivariaten Regressionsanalyse wird dem gesamten verfügbaren Haushaltseinkommen kein signifikanter Beitrag zur Erklärung der Erdgaskosten ausgewiesen. Den stärksten Einfluss auf die Erdgaskosten zeigt hier die Nutzfläche der Wohnung.
1 Einleitung und Hintergrund

Für die Definition von Energiearmut in Österreich wurde wieder der Bericht der Energie-Control Austria (E-Control, 2013) herangezogen: „Als energiearm sollen jene Haushalte gelten, die über ein Einkommen unter der Armutgefährdungsschwelle verfügen aber gleichzeitig überdurchschnittlich hohe Energiekosten zu begleichen haben.“

Laut EU-SILC 2016 liegt die Armutgefährungsschwelle bei 14.217 Euro äquivalisierter Haushalts einkommen pro Jahr (siehe Kapitel 2.1.1). Liegt das gesamte verfügbare Äquivalenzaushaltseinkommen darunter, gilt ein Haushalt als armutsgefährdet.

Als überdurchschnittlich hohe Energiekosten gelten Kosten von mindestens 140% des Medians der gesamten Energiekosten aller Haushalte. Dabei werden die Energiekosten analog der Armutsgefährdungsschwelle äquivalisiert (siehe Kapitel 2.1.2).

Dies ermöglichte eine umfassende Analyse der energiearmen Haushalte sowie eine Auswertung des Energieverbrauchs und der Energieausgaben nach verschiedenen Einkommensgruppen.

In der Mikrozensus-Arbeitskräfteerhebung sind zudem weitreichende soziodemografische Merk- male für eine deskriptive Betrachtung der Haushalte vorhanden.

Der vorliegende Bericht stellt die „energiear- men“ Haushalte in den Vordergrund und ana- lysiert diese nach sizio-demografischen Merk- malen.

Das Projekt orientiert sich für das „statistical Mat- ching“ an den Erkenntnissen des Vorläufberichts von 2017. Statistical Matching stellt einen modellob-
sierten Ansatz dar, statistische Informationen aus zumindest zwei Quellen zu verknüpfen, also zwei Datenkörper auf Mikrodatenebene methodisch zu verschneiden. Damit können neue synthetische Datensätze gebildet werden. Zu jedem Beobachtungsfall des Empfänger-Datensatzes (Mikrozensus Energie) wird ein sogenannter statistischer Zwilling im Spender-Set (EU-SILC) gesucht, welcher in vorab ausgewählten Verknüpfungsvariablen (Haushaltsgröße, Anzahl der Wohnungen im Gebäude etc.) bestmöglich übereinstimmt.

Der Vorteil der Methode liegt in der kosteneffizienten Generierung eines neuen statistischen Produkts, welches zusätzliche analytische Erkenntnisse ermöglicht (siehe auch Eurostat, 2013). Die Belastung von Respondentinnen und Respondenten wird verringert und damit die Kostenwirksamkeit verbessert.

Durch die vorgenommene direkte Zuordnung von wesentlichen Einkommensinformationen aus Verwaltungsdaten wurde eine sehr hohe Validität für die berechnete Variable zum gesamten verfügbaren Haushaltseinkommen erreicht.

Die Daten werden hochgerechnet auf die Wohnbevölkerung in Österreich gezeigt und interpretiert. Signifikanztests beziehen sich jedoch auf den ungewichteten Datensatz.

2 Aspekte der Energiearmut

Bei Energiearmut geht es um die (Nicht-) Leistbarkeit von Energie, was insbesondere für Haushalte mit niedrigem Einkommen – wie armutsgefährdete Haushalte – von Relevanz ist. In der vorliegenden Studie wird dabei die Höhe der Energieausgaben in Relation zum Einkommen eines Haushalts gesetzt.

Global wird als Energiearmut gesehen, dass Menschen überhaupt keinen Zugang zu Energie (vor allem Elektrizität) haben bzw. vollständig auf feste Brennstoffe zum Kochen, Heizen, Belichten und Betreiben elektrischer Geräte angewiesen sind. Weltweit lebten 2017 knapp 1 Milliarde Menschen gänzlich ohne Zugang zu Elektrizität, 2,7 Milliarden Menschen haben keine sauberen Kochmöglichkeiten.

Die UN hat im Jahr 2015 in der United Nations Agenda 2030 für nachhaltige Entwicklung (Sustainable Development Goals, SDGs) im Ziel (Goal) 7 „Beeinflussbare und Saubere Energie“ Bezug auf den leistbaren Zugang zu Energie und Energiedienstleistungen genommen.

Grundsätzlich gibt es damit für die Festlegung von energiearmen Haushalten zwei Ansätze:

- Einerseits sind Haushalte energiearm, wenn sie weniger Energie nutzen können, als notwendig oder angemessen wäre.
- Andererseits sind Haushalte energiearm, wenn sie einen sehr hohen Teil ihres Einkommens für Energiekosten aufwenden müssen.

Die Berücksichtigung notwendiger oder angebrachter Mengen an Energie erscheint für die Messung von Energiearmut theoretisch sinnvoll. Die tatsächlich gemessenen Ausgaben für Energie können deshalb niedrig sein, weil unfreiwillig auf Energie verzichtet wurde, um Kosten zu sparen. Diese Haushalte würden – betrachtet man nur die Energiekosten - fälschlicherweise nicht als energiearm gelten. Zu notwen-
digen oder angemessenen Mengen und Kosten für Energie liegen in Österreich derzeit keine objektiven Daten vor. Die EU-weite Erhebung zu EU-SILC enthält jedoch neben Fragen zu den Energiekosten der Haushalte folgende subjektive Frage: „Können Sie sich leisten, die gesamte Wohnung angemessen warm zu halten?“.

In Österreich hatten demnach im Jahr 2016 3% der Wohnbevölkerung bzw. knapp 3% der österreichischen Haushalte die Möglichkeit, ihre gesamte Wohnung angemessen warm zu halten, das entspricht knapp 230.000 Personen (rund 110.000 Haushalte). Die Personengruppe mit einem Einkommen von unter 60% des Medians (Armutsgefährdungsschwelle) lag mit 9% stark über dem durchschnittlichen Anteil (3%) (Grafik 2.2).

Dieser Indikator gibt damit einen Hinweis auf den ersten Ansatz von Energiearmut, also auf jene Haushalte, die weniger Energie einsetzen als sie eigentlich möchten oder brauchen würden. Der Indikator auf subjektiver Ebene reicht jedoch nicht aus, um das Phänomen Energiearmut grundlegend zu erfassen.

Grafik 2.2
Anteil der Personen, die es sich nicht leisten können, die Wohnung angemessen warm zu halten

Q: STATISTIK AUSTRIA, EU-SILC 2016.

Neben niedrigem Einkommen und hohen Energiekosten sehen Benke et al. (2011) auch eine aus Energie- sicht schlechte Wohnqualität als Ursache für Energiearmut an, etwa wenn Personen mit einem niedrigen Haushaltseinkommen in alten, unsanierten Gebäuden mit einem überdurchschnittlich hohen Energiebedarf vor allem für die Heizung wohnen.

Relativ betrachtet wurden laut Konsumerhebung 2014/2015 im untersten Einkommensquartil 5,8% der gesamten Haushaltsausgaben für Energie im Bereich Wohnen auf-
2.1 Definitionen von Energiearmut

Im europäischen Kontext gibt es keine harmonisierte Definition von Energiearmut. In den internationalen Betrachtungen werden beide Ansätze (nicht-Leistbarkeit und überhöhte Kosten) von Energiearmut herangezogen.

Während in Großbritannien\(^3\) Haushalte als energiearm gelten, wenn sie überdurchschnittliche Energiekosten bei einem gleichzeitig niedrigen Einkommen aufweisen, liegt in Spanien der Fokus auf Haushalten, die Probleme haben, ihre Wohnung ausreichend zu heizen\(^4\).

Eine neue Studie von Matzinger et al. (2018) orientiert sich an der Armutsberichterstattung und schlägt danach zwei neue Definitionen von Energiearmut vor. Festgelegt werden die Definition von

- Energiearmutsgefährdung sowie von
- Energiearmut.

Eine *Energiearmutsgefährdung* liegt vor, wenn Haushalte armutsgefährdet sind und es für sie schwierig oder unmöglich ist, grundlegende Energiedienstleistungen (Heizung, Warmwasser, Strom) für ihren Haushalt abzudecken.

Eine *Energiearmut* liegt vor, wenn Haushalte energiearmutsgefährdet sind und mindestens drei von weiteren sieben Benachteiligungen auf sie zutreffen.

Bei der Definition zur Energiearmutsgefährdung wird zum objektiven Maß der Armutsgefährdung die subjektive Einschätzung der Energiesituation zugezählt.

Damit können jene Haushalte als potentiell gefährdet erfasst werden, die weniger Energie nutzen können, als notwendig oder angemessen wäre. Dieser Indikator lässt sich näherungsweise aus EU-SILC berechnen, wenn man die Frage „Können Sie sich leisten, die gesamte Wohnung angemessen warm zu halten?“ mit den armutsgefährdeten Personen bzw. Haushalten kombiniert. Während insgesamt laut EU-SILC 3% der Haushalte ihre Wohnung nicht angemessen warm halten konnten, war 1% der Haushalte armutsgefährdet UND konnte die Wohnung nicht angemessen warm halten. Nicht berücksichtigt werden dabei jene Haushalte, die laut Definition Energiearmutsgefährdung sind, weil es für sie schwierig oder unmöglich ist, Warmwasser oder Strom in angemessener Menge abzudecken.

Im vorliegenden Bericht wird Energiearmut – wie bereits im Pilotbericht 2017 – über niedriges Haushaltseinkommen in Kombination mit überdurchschnittlich hohen Energiekosten definiert.

Die verwendete Definition folgt der Studie der E-Control zur Energiearmut in Österreich (2013, S7ff), welche für Österreich einen umsetzungsorientierten Ansatz mit folgender Definition für Energiearmut vorschlägt: „Als energiearm sollen jene Haushalte gelten, die über ein Einkommen unter der Armutsgefährdung..."
Die Verwendung der Armutsgefährdungsschwelle führt implizit zur Berücksichtigung der Haushaltsgröße, da die Grundlage für die Berechnung der Armutsgefährdung das äquivalisierte Nettohaushaltsinkommen ist (siehe nachfolgendes Unterkapitel).

Für letzteren Punkt ist auch der Aspekt der Energieeffizienz (Stichwort energieeffiziente Wohnungen bzw. Geräte) interessant (Christianell et al. 2014).

Der Entwurf des integrierten nationalen Energie- und Klimaplans für Österreich für die Periode 2021-2030 (BMNT 2018) nimmt im Punkt 2.4.4. ebenfalls auf Energiearmut Bezug. Hier wird auf die Definition laut E-Control verwiesen.

2.1.1 Armutsgefährdung

Im Rahmen des vorliegenden Projekts werden auch jene Haushalte näher betrachtet, die unter der Armutsgefährdungsschwelle liegen. Die entsprechenden Daten zur Armutsgefährdungsschwelle stammen aus der Erhebung EU-SILC 2016.

Grundlage für die Berechnung der Armutsgefährdung ist das äquivalisierte Nettohaushaltsinkommen, also das verfügbare Haushaltsinkommen dividiert durch die Summe der Konsumäquivalente des Haushalts. Demzufolge wird das Haushaltsinkommen mit der so genannten EU-Skala (modifizierte OECD-Skala) gewichtet: Für jeden Haushalt wird ein Grundbedarf angenommen, die erste erwachsene Person eines Haushalts erhält daher ein Gewicht von 1. Für jede weitere erwachsene Person wird ein Gewicht von 0,5 und für Kinder unter 14 Jahren ein Gewicht von 0,3 angenommen. Ein Haushalt mit Vater, Mutter und Kind hätte somit ein errechnetes Konsumäquivalent von 1,8 gegenüber einem Einpersonenhaushalt.

Unterstellt wird bei diesem Vorgehen, dass mit zunehmender Haushaltsgröße und abhängig vom Alter der Kinder eine Kostenersparnis im Haushalt durch gemeinsames Wirtschaften erzielt wird (Skaleneffekte).

14,1% der Bevölkerung (auf Personenebene) sind laut EU-SILC 2016 armutsgefährdet (bzw. mit 95% Vertrauenswahrscheinlichkeit zwischen 12,7% und 15,4%). Hochgerechnet auf die rund 8,6 Millionen Personen umfassende Gesamtbevölkerung liegt
Die Zahl der armutsgefährdeten Personen zwischen rund 1.089.000 und 1.326.000 Personen (siehe auch Lamei et al., 2017, S.10-11).

2.1.2 Überdurchschnittlich hohe Energiekosten

Für die Festlegung der energiearmen Haushalte wurde analog der Pilotstudie 2017 wieder auf die Definition der Studie zur Energiearmut in Österreich (E-Control, 2013) zurückgegriffen: „Als energiearm sollen jene Haushalte gelten, die über ein Einkommen unter der Armutsgefährdungsschwelle verfügen aber gleichzeitig überdurchschnittlich hohe äquivalisierte Energiekosten zu begleichen haben.“

Zur Äquivalisierung der Energiekosten wird analog der Berechnung der äquivalisierten Haushaltseinkommen die EU-Skala herangezogen: Für jeden Haushalt wird ein Grundbedarf angenommen, die erste erwachsene Person eines Haushalts erhält daher ein Gewicht von 1. Für jede weitere erwachsene Person wird ein Gewicht von 0,5 und für Kinder unter 14 Jahren ein Gewicht von 0,3 angenommen.

Die Vorteile einer Unterscheidung zwischen durchschnittlichen und überdurchschnittlich hohen Energieausgaben liegen laut Bericht der E-Control in folgenden Punkten:

1. Energiearmut wird durch höhere Schwellenwerte klarer von Armut abgegrenzt: neben dem niedrigen Einkommen sind überdurchschnittlich hohe Energiekosten nur so wesentliches Merkmal von Energiearmut!

2. Sie ermöglichen eine Trennschärfe bei der Ursachenfindung von Energiearmut: nur so können unterschiedliche Gründe für hohe Ausgaben auch wirklich erkannt und in Folge effektiv bekämpft werden!

3. Höhere Schwellenwerte genießen höhere gesellschaftliche Akzeptanz: jemanden als energiearm zu bezeichnen, obwohl keine hohe Energierechnung vorliegt, stößt auf weniger Akzeptanz in der Bevölkerung als Fälle, wo die Durchschnittskosten klar überschritten werden!"
3 Energiearmut

Im aktuellen Kapitel werden die für das Projekt als „energiearm“ definierten Haushalte in ihrer sozioökonomischen Zusammensetzung sowie nach verwendeten Energieträgern analysiert.

Im europäischen Kontext gibt es wie erwähnt noch keine Übereinstimmung darüber, was Energiearmut genau bedeutet. Energiearmut wird generell als mangelnde Möglichkeit definiert, die eigene Wohnung angemessen zu heizen bzw. eine angemessene Menge an Energie für Beleuchtung, Warmwasser oder weitere (notwendige) Zwecke im Haushalt zu beziehen, oder auch als Notwendigkeit, einen unverhältnismäßig hohen Anteil der Haushaltsausgaben für Energiekosten aufzuwenden (für die Hintergründe zur Energiearmut siehe auch Kapitel 2).

Um Energiearmut auch objektiv messen zu können, werden daher in einem pragmatischen Ansatz die tatsächlich anfallenden Energiekosten zum Einkommen der Haushalte in Bezug gesetzt.

In einer Studie der e-control zur Energiearmut in Österreich (2014, S7ff) wird die folgende Definition angewandt: „Als energiearm sollen jene Haushalte gelten, die über ein Einkommen unter der Armutsgefährdungsschwelle verfügen und gleichzeitig überdurchschnittlich hohe Energiekosten aufwenden.“ Die Energiekosten sollen per Definition analog der Armutsgefährdungsschwelle äquivalisiert werden.

3.1 Struktur der energiearmen Haushalte

Grafik 3.1 vergleicht das Einkommen von Haushalten, die nicht energiearm sind, mit dem energiearmen Haushalte. Haushalte ohne Energiearmut haben naturgemäß durchschnittlich ein deutlich höheres gesamtes verfügbares Haushaltseinkommen sowie ein höheres Äquivalenzeinkommen als energiearme Haushalte.

Die Energiekosten der Gruppe der energiearmen Haushalte liegen per Definition mit durchschnittlich 2.530 Euro pro Jahr um über 40% über dem Durchschnitt aller Haushalte von 1.790 Euro bzw. über jenem der nicht-energiearmen Haushalte von 1.770 Euro (siehe Grafik 3.2).

Interessant ist, ob sich energiearme Haushalte auch durch siziodemografische Variablen wie Alter oder Schulbildung von nicht-energiearmen Haushalten unterscheiden. Dabei ist zu berücksichtigen, dass es sich beim Mikrozensus Energie um einen Datensatz auf Haushaltsebene handelt. Dementsprechend wird für jeden Fall beispielsweise die „höchste abgeschlossene Schulbildung“ im Haushalt angegeben und nicht die Schulbildungen jedes einzelnen Haushaltsmitglieds ausgewiesen.

Wie Grafik 3.3 zeigt, ist der Anteil der „Pflichtschule“ (32%) als höchster abgeschlossener Schulbildung bei energiearmen Haushalten deutlich höher als bei nicht-energiearmen Haushalten (14%). Rund 33%
der nicht-energiearmen Haushalte verfügen dagegen über zumindest Matura im Gegensatz zu 25% der energiearmen Haushalte.6

Durchschnittlich sind 3,1% aller Haushalte energiearm. Haushalte mit höchstens Pflichtschulabschluss sind zu 6,6% von Energiearmut betroffen. Haushalte mit darüber hinausgehendem Bildungsabschluss liegen dagegen an oder unter dem Durchschnittswert.

Grafik 3.3
Höchste abgeschlossene Schulbildung nach Energiearmut

Grafik 3.4
Haushaltsgröße nach Energiearmut

Auch nach dem Alter zeigen sich signifikante Differenzen zwischen energiearmen Haushalten und der Vergleichsgruppe. Auch hier wird jedem Haushalt das Alter einer Person zugewiesen. Die Personen in energiearmen Haushalten sind durchschnittlich älter als jene in nicht-energiearmen Haushalten8. 59% der energiearmen Haushalte sind der Altersgruppe „mindestens 55 Jahre alt“ zugewiesen, nicht-energiearme Haushalte sind nur zu 49% in dieser Gruppe (Grafik 3.5). Haushalte in der Altersgruppe ab 75 Jahren sind zu 4,3% von Energiearmut betroffen.

Grafik 3.5
Alter nach Energiearmut

Haushalte mit Kindern unter 18 Jahren sind mit 11% seltener in der Gruppe der Energiearmen anzutreffen als in der Vergleichsgruppe mit 22% (Grafik 3.6). Dementsprechend sind sie mit 1,6% deutlich seltener von Energiearmut betroffen als Personen in Einpersonenhaushalten mit 5,3%.

6 Die Unterschiede nach Schulbildung sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
7 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Chi-Quadrat-Test).
8 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Chi-Quadrat-Test).
ENERGIEARMUT IN ÖSTERREICH, HAUSHALTSENERGIE UND EINKOMMEN – Energiearmut

Nach der Nutzfläche der Wohnung gibt es signifikante Unterschiede. Energiearme Haushalte leben mit 50% deutlich häufiger in kleinen Wohnungen bis 80 m² als nicht-energiearme mit einem Anteil von 42%\(^9\) (Grafik 3.7).

Energiearme und andere Haushalte unterscheiden sich auch nach dem Anteil der Mietwohnungen etwas voneinander (Grafik 3.8). Energiearme Haushalte haben etwas seltener eine Wohnung im Eigentum als nicht-energiearme Haushalte\(^10\).

Die Unterschiede sind signifikant auf einem Niveau von 0,01 (Chi-Quadrat-Test). Die Unterschiede sind signifikant auf einem Niveau von 0,05 (Chi-Quadrat-Test). Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Chi-Quadrat-Test).

Grafik 3.6
Kinder im Haushalt nach Energiearmut

Q: STATISTIK AUSTRIA. In der Kategorie „Haushalt ohne Kinder < 18“ sind auch familiengleiche Personen enthalten.

Merkmale wie die Gebäudegröße, die rechtliche Struktur (Eigentum oder Miete) oder das Gebäudealter können einen wesentlichen Einfluss auf die Höhe des Energieverbrauchs und der Energiekosten haben.

Bezüglich Gebäudegröße unterscheiden sich die energiearmen Haushalte von nicht-energiearmen Haushalten: energiearme Haushalte sind etwas häufiger in Gebäuden mit 1 bis 2 Wohnungen wohnhaft als die Vergleichsgruppe. Die Unterschiede sind allerdings nicht statistisch signifikant.

Grafik 3.7
Nutzfläche nach Energiearmut

Q: STATISTIK AUSTRIA.

Energiearme Haushalte sind signifikant häufiger in älteren Wohngebäuden als nicht-energiearme (Grafik 3.9)\(^11\) anzutreffen. Rund 44% der energiearmen Haushalte leben in Gebäuden, die bis 1960 erbaut wurden, dies betrifft nur 29% der nicht-ener-

\(^9\) Die Unterschiede sind signifikant auf einem Niveau von 0,01 (Chi-Quadrat-Test).

\(^10\) Die Unterschiede sind signifikant auf einem Niveau von 0,05 (Chi-Quadrat-Test).

\(^11\) Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Chi-Quadrat-Test).
giearmen Haushalte. Dementsprechend sind Haus-
halte in Gebäuden bis 1960 überdurchschnittlich häu-
fig (5%) von Energiearmut betroffen. Bewohner von
Gebäuden die ab 1991 erbaut wurden, sind dagegen
nur zu 1% energiearm.

3.2 Energieverbrauch und Energie-
kosten

Energiearme Haushalte zeichnen sich per Defini-
tion durch überdurchschnittliche Energiekosten
(zumindest 140% des Medians der äquivalisierten
Energiekosten aller Haushalte) und ein Einkom-
men unter der Armutgefährdungsschwelle aus.

Dementsprechend liegt ihr Energieverbrauch mit
23.170 kWh jährlich deutlich über dem Durchschnitt
von 17.440 kWh. Die Energiekosten liegen mit durch-
schnittlich 2.530 Euro pro Jahr um rund 40% über
dem Durchschnitt von 1.790 Euro aller Haushalte12.

Grafik 3.10 zeigt die relativen Energiekosten, also
den Anteil der Energiekosten am gesamten verfügba-
ren Haushaltseinkommen. Während durchschnittlich
4,2% des Einkommens für Energiekosten für Woh-
nen verwendet werden, müssen energiearme Haus-
halte knapp das Fünffache – nämlich rund 20% ihres
gesamten verfügbaren Einkommens für Energie auf-
wenden. Die Vergleichsgruppe der nicht-energiear-
men Haushalte kommt auf einen Wert von 4,0%.

Grafik 3.10
Anteil der Energiekosten am Haushaltseinkommen

Q: STATISTIK AUSTRIA.

Auch Stromverbrauch und Stromkosten sind erwar-
tungsgemäß für energiearme Haushalte deutlich
überdurchschnittlich. Während der Durchschnitts-

Grafik 3.11
Anteil der Stromkosten am Haushaltseinkommen

Q: STATISTIK AUSTRIA.

haushalt knapp 4.400 kWh Strom benötigt und dafür
knapp 860 Euro jährlich bezahlt, verbrauchen ener-
giearme Haushalte knapp 5.660 kWh Strom, bei jähr-
lichen Kosten von rund 1.170 Euro.

Der Anteil der Stromkosten am gesamten verfügba-
ren Haushaltseinkommen liegt für energiearme Haus-
halte bei über 9% (Grafik 3.11). Die Vergleichsgruppe
der nicht-energiearmen Haushalte wendet 1,9% ihres
Haushaltseinkommens für ihre Stromkosten auf.

3.3 Energieverbrauchskategorien

Energiearme Haushalte haben vor allem für die
Energieverbrauchskategorie Heizen signifikant
höhere absolute Verbräuche als die Gruppe der
nicht-energiearmen Haushalte. Der Verbrauch
für die Kategorie „Sonstiges“ (Strom für sons-
tige Zwecke) ist etwas höher. Für Warmwas-
ser und Kochen wenden energiearme Haushalte
dagegen weniger Energie auf als nicht-energie-
armer Haushalte13.

Der Verbrauch der energiearmen Haushalte für Hei-
zen liegt zu über 50% über dem der Vergleichs-
gruppe. Für Warmwasser wird dagegen um 19%
weniger Energie aufgewendet, für Kochen um 3%
weniger. Für sonstige Zwecke wird um 20% mehr
Energie verbraucht als von nicht-energiearmen Haus-
halten. Energiearme Haushalte nutzen rund 17.340
kWh für Heizzwecke, nicht-energiearme Haushalte
11.400 kWh (Grafik 3.12). Für Warmwasser setzen
energiearme Haushalte dagegen nur 2.300 kWh
ein, nicht-energiearme Haushalte kommen auf 2.830
kWh.

12 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
13 Die Unterschiede sind für Heizen, Warmwasser, Kochen und Sonstige signifikant auf einem Niveau von 0,001 (Anova, F-Test).
Diesen Unterschieden lassen sich auch in der Verteilung der Verbrauchskategorien ablesen (Grafik 3.13). Nicht-energiearme Haushalte verbrauchen 66% ihrer Energie für die Heizung der Wohnung, energiearme Haushalte kommen auf 75%. Demgegenüber setzen energiearme Haushalte nur 10% ihres Energieverbrauchs für Warmwasser ein, 2% für Kochen und 13% für Sonstiges (Strom). Haushalte die nicht-energiearm sind, verbrauchen 16% ihre Gesamtenergie für Warmwasser, 3% für Kochen und 15% für Sonstiges.

Auch die Energiekosten verteilen sich, dem Energieverbrauch folgend, anteilig etwas unterschiedlich auf die Energieträger (Grafik 3.15). In der Gruppe der energiearmen Haushalte fallen 14% der Kosten auf den Energieträger Heizöl, in der Vergleichsgruppe hat dieser Energieträger einen Anteil von 12%. Demgegenüber fallen in der Gruppe der Energiearmen anteilig 7% der Kosten für Energieträger auf Brennholz (inklusive Pellets, Holzbriketts und Hackschnit-
Energiearmut in Österreich, Haushaltsenergie und Einkommen – Energiearmut

Die Unterschiede sind für Strom, Erdöl und Fernwärme signifikant auf einem Niveau von 0.001 (Anova, F-Test). Für Brennholz und Erdgas ergeben sich – auch begründet durch die geringen Fallzahlen der tatsächlichen Nutzung – keine signifikanten Unterschiede. Betrachtet wurden dabei alle Haushalte und nicht nur jene, die den jeweiligen Energieträger tatsächlich nutzten.

Übersicht 3.1

<table>
<thead>
<tr>
<th></th>
<th>2013/2014</th>
<th>2015/2016*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energieverbrauch in kWh je Haushalt</td>
<td>18.360</td>
<td>17.440</td>
</tr>
<tr>
<td>Energiekosten in Euro je Haushalt</td>
<td>1.870</td>
<td>1.790</td>
</tr>
<tr>
<td>Energiekosten in % des Haushaltseinkommens</td>
<td>4,6</td>
<td>4,2</td>
</tr>
</tbody>
</table>

Q: STATISTIK AUSTRIA. - * Datenstand Februar 2019 und neue Gewichtung.

Auch nach den Stromverbräuchen zeigt sich ein leichter Rückgang im Zeitvergleich, die absoluten Stromkosten bleiben nahezu ident. Die relativen Stromkosten zeigen für die Haushalte insgesamt sowie die energiearmen Haushalte einen Rückgang (Übersicht 3.3).

Übersicht 3.2

<table>
<thead>
<tr>
<th></th>
<th>2013/2014</th>
<th>2015/2016*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stromverbrauch in kWh je Haushalt</td>
<td>4.500</td>
<td>5.400</td>
</tr>
<tr>
<td>Stromkosten in Euro je Haushalt</td>
<td>850</td>
<td>856</td>
</tr>
<tr>
<td>Stromkosten in % des Haushaltseinkommens</td>
<td>2,1</td>
<td>9,8</td>
</tr>
</tbody>
</table>

Q: STATISTIK AUSTRIA. - * Datenstand Februar 2019 und neue Gewichtung.

Grafik 3.15
Energieträgermix der Haushalte nach den Anteilen der Energiemengen

[Diagramm visualisiert den Energieträgermix der Haushalte mit den Anteilen von Strom, Erdgas, Brennholz, Fernwärme und Solaranlagen/Wärmepumpen.]

Q: STATISTIK AUSTRIA. – Die Energieträger Kohle und Flüssiggas kommen auf unter 1% und werden hier nicht ausgewiesen. - Rundungsdifferenzen nicht ausgeglichen.
4 Energieverbrauch und Energiekosten

Eine ausreichende und leistbare Energieversorgung ist von zentraler Bedeutung für die Lebensqualität in österreichischen Haushalten. Die Höhe des Haushaltseinkommens spielt eine wesentliche Rolle für den Energieverbrauch bzw. die Energiekosten der Haushalte.

Nachfolgend werden der Energieverbrauch insgesamt sowie die Energieträger Strom und Naturgas, dargestellt. In den Grafiken wird jeweils der Mittelwert (als arithmetisches Mittel) für den Energieverbrauch und die Energiekosten der Haushalte gezeigt.

4.1 Energieverbrauch und Energiekosten insgesamt

Auch die betrachteten Einkommensvariablen korrelieren signifikant mit dem Energieverbrauch und den Energiekosten, am höchsten ist dieser Zusammenhang für die Variable „gesamtes verfügbares Haushaltseinkommen“. Je höher dieses ist, desto höher ist auch der Energieverbrauch. Haushalte mit einem Einkommen bis zur Armutsgefährdungsgrenze haben einen signifikant niedrigeren Verbrauch bzw. niedrigere Kosten als die Vergleichsgruppe der nicht-armutsgefährdeten Haushalte. Energiearme Haushalte haben definitionsgemäß im Vergleich zur Referenzgruppe einen höheren Energieverbrauch und einhergehend höhere Energiekosten.

Für das gesamte verfügbare Haushaltseinkommen sowie das Äquivalenz-Haushaltseinkommen werden jeweils drei Einkommensgruppen nach Terzilen Drittel (niedriges, mittleres und hohes Haushaltseinkommen bzw. niedriges, mittleres und hohes Äquivalenz-Einkommen) gebildet (siehe Kapitel 5.5.1).

Gezeigt werden die Ergebnisse darüber hinaus für die Gruppe der armutsgefährdeten Haushalte sowie die Gruppe der energieärmeren Haushalte.

16 Die Variable ist negativ mit Energieverbrauch und Energiekosten korreliert.
Übersicht 4.1
Korrelation diverser Variablen mit Energieverbrauch und Energiekosten insgesamt

<table>
<thead>
<tr>
<th>Variable</th>
<th>Merkmalsausprägung</th>
<th>Energieverbrauch insgesamt</th>
<th>Energiekosten insgesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtes verfügbares Haushaltseinkommen</td>
<td>in Euro</td>
<td>0,272</td>
<td>0,237</td>
</tr>
<tr>
<td>Äquivalenzeinkommen</td>
<td>in Euro</td>
<td>0,064</td>
<td>0,082</td>
</tr>
<tr>
<td>Haushalt unter der Armutgefährdungsgrenze</td>
<td>0 Nein / 1 Ja</td>
<td>-0,034</td>
<td>-0,041</td>
</tr>
<tr>
<td>Energiearm</td>
<td>0 Nein / 1 Ja</td>
<td>0,079</td>
<td>0,151</td>
</tr>
<tr>
<td>Höchste abgeschlossene Schulbildung</td>
<td>1 Pflichtschule/keine Pflichtschule / 2 Lehrabschluss (Berufsschule) / 3 Berufsbild, mittlere Schule (ohne Berufsschule) / 4 Allgemeinbildende höhere Schule / 5 Berufsbild, höhere Schule (inkl. Lehrg., Kolleg) / 6 Universität, Fachhochschule</td>
<td>-0,042</td>
<td>0,030</td>
</tr>
<tr>
<td>Bevölkerungsichte</td>
<td>0 Niedrige und mittlere Bevölkerungsdichte / 1 Hohe Bevölkerungsdichte</td>
<td>-0,331</td>
<td>-0,129</td>
</tr>
<tr>
<td>Haushaltsgröße</td>
<td>Anzahl der Personen (6 und mehr)</td>
<td>0,404</td>
<td>0,335</td>
</tr>
<tr>
<td>Anzahl der Wohnungen im Gebäude</td>
<td>0 Ein- oder Zweifamilienhäuser / 1 3 oder mehr Wohnungen</td>
<td>-0,651</td>
<td>-0,331</td>
</tr>
<tr>
<td>Wohnung: Rechtsverhältnis des HH</td>
<td>0 Eigentum / 1 Nicht-Eigentum (entgeltliches oder unentgeltl. Rechtsverhältnis)</td>
<td>-0,458</td>
<td>-0,243</td>
</tr>
<tr>
<td>Wohnung: Nutzfläche</td>
<td>In m²</td>
<td>0,649</td>
<td>0,427</td>
</tr>
<tr>
<td>Baujahr des Gebäudes</td>
<td>1 Bis 1960, 2 1961 bis 1990, 3 1991 bis 2005, 4 Ab 2006</td>
<td>-0,233</td>
<td>-0,200</td>
</tr>
</tbody>
</table>

Korrelationskoeffizient nach Spearman
Korrelationskoeffizient nach Pearson

Q: STATISTIK AUSTRIA
alle gezeigten Variablen sind signifikant mit Energieverbrauch und Energiekosten korreliert (Niveau 0,001). Ordinal skalierte Variablen (Schulbildung, Haushaltsgröße, Baujahr) werden wie metrische Variablen behandelt.

4.1.1 Energieverbrauch insgesamt

Der durchschnittliche Energieverbrauch der österreichischen Haushalte liegt laut Mikrozensus Energie 2015/2016 bei 17.440 kWh\(^ {17} \). Jener von Haushalten mit niedrigem gesamten verfügbaren Haushaltseinkommen ist, wie Grafik 4.1 zeigt, mit 14.103 kWh deutlich geringer als jener von Haushalten mit mittlerem (17.403 kWh) oder hohem Haushaltseinkommen (21.272 kWh)\(^ {18} \). Betrachtet wird dabei der jährliche Gesamtenergieverbrauch.

\(^ {17} \) Mikrozensus Energie mit Datenstand Februar 2019 und neuer Gewichtung.

\(^ {18} \) Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
Eine wesentliche Einflussgröße auf Einkommen und Energieverbrauch stellt die Haushaltsgröße, also die Anzahl der Personen im Haushalt, dar. Das Einkommen steigt mit der Anzahl der Personen im Haushalt. Wie Grafik 4.2 darstellt, erhöhte sich auch der Energieverbrauch mit zunehmender Haushaltsgröße wesentlich.

Ein Ein-Personen-Haushalt verbraucht mit 12.176 kWh rund ein Drittel der Energie eines Haushalts mit 6 und mehr Personen (35.794 kWh). Mit einer zweiten Person im Haushalt steigt der Energieverbrauch auf 17.961 kWh an.

Um die Haushaltsgröße zu berücksichtigen, wird für das Haushaltseinkommen eine Äquivalisierung vorgenommen (siehe Kapitel 2). Betrachtet man den Energieverbrauch nach den Terzilen des Äquivalenzeinkommens, bleiben die Unterschiede weiterhin statistisch signifikant (Grafik 4.3). Haushalte mit niedrigem Äquivalenzeinkommen verbrauchen jährlich 17.223 kWh Energie, die mittlere Gruppe 16.878 kWh. Haushalte mit hohem Äquivalenzeinkommen verbrauchen jährlich 18.264 kWh. Armutsgefährdete Haushalte (17.325 kWh) haben einen unterdurchschnittlichen Energieverbrauch, energiearme Haushalte (23.170 kWh) definitionsgemäß einen überdurchschnittlichen.

Die größten Differenzen im Energieverbrauch insgesamt zeigen sich nach Nutzfläche, Gebäudegröße (1 bis 2 Wohnungen oder größer) sowie dem Rechtsverhältnis an der Wohnung (Eigentum oder nicht). Bezüglich des Alters der Wohngebäude sind ebenfalls signifikant unterschiedliche Energieverbräuche nachweisbar. Wie Grafik 4.4 zeigt, wird umso mehr Energie eingesetzt, je größer die Wohnung ist. In kleinen Wohnungen bis 50 m² werden jährlich durchschnittlich 8.828 kWh Energie verbraucht, sehr große Wohnungen mit über 170 m² erreichen Werte von 32.165 kWh.

Die Gesamtunterschiede sind signifikant auf einem Niveau von 0,001, (Anova, F-Test). Die Unterschiede zwischen erster und zweiter Einkommensgruppe sind nicht signifikant.

Die Unterschieden sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).

Die Unterschieden sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
Haushalte in Ein- und Zweifamilienhäusern benötigen durchschnittlich 23.608 kWh Energie pro Jahr (Grafik 4.5). Dieser Wert ist mehr als doppelt so hoch, wie der Energieeinsatz in größeren Gebäuden (11.477 kWh).

Handelt es sich um eine Eigentumswohnung bzw. ein Eigentumshaus, so liegt der Energieverbrauchswert mit 21.771 kWh ebenfalls deutlich über dem für ein entgeltliches oder unentgeltliches Rechtsverhältnis in Miete (12.721 kWh).

Der Energieverbrauch ist erwartungsgemäß umso niedriger, je jünger das Gebäude ist. Während Gebäude, die bis 1960 erbaut wurden, noch 20.612 kWh Energie benötigten, liegt dieser Wert für Gebäude ab dem Baujahr 2006 bei 12.066 kWh.

Haushalte mit hohem Haushaltseinkommen wohnen deutlich häufiger in Ein- und Zweifamilienhäusern (63%) als Haushalte mit mittlerem (49%) und niedrigem Haushaltseinkommen (37%).

Die Unterschiede nach Energieverbrauch bleiben auch dann erhalten, wenn man nur Haushalte die in Ein- und Zweifamilienhäusern wohnen, in die Analyse einbezieht (Grafik 4.6). Die Gruppe mit niedrigem Haushaltseinkommen verbraucht jährlich 21.426 kWh Energie und liegt damit deutlich unter dem Durchschnitt von 23.608 kWh. Die Haushalte mit mittlerem Einkommen benötigen rund 22.980 kWh, jene mit hohem Einkommen 25.584 kWh.

Für energiearme Haushalte zeigen sich im Vergleich zu den nicht-energiearmen Haushalten ebenfalls signifikante Differenzen im Gesamtenergieverbrauch der Ein- und Zweifamilienhäuser. Die Unterschiede im Energieverbrauch der Ein- und Zweifamilienhäuser nach den Äquivalenzeinkommensgruppen und nach der Armutsgefährdung (ja/nein) sind dagegen nicht signifikant.

4.1.2 Energiekosten insgesamt

Q: STATISTIK AUSTRIA.

Nach der Nutzfläche\(^{29}\) gibt es wieder deutliche Unterschiede: kleine Wohnungen bis 50 m\(^2\) haben durchschnittliche jährliche Energiekosten von 1.206 Euro, Wohnungen von 51 bis 80 m\(^2\) benötigen rund 1.490 Euro. Sehr große Wohnungen mit mehr als 170 m\(^2\) haben durchschnittliche Kosten von 2.475 Euro zu begleichen (Grafik 4.10).

\(^{26}\) Die Gesamtunterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test). Die Unterschiede zw. drei und vier Personen Haushalten sind nicht signifikant.

\(^{27}\) Die Gesamtunterschiede sind signifikant auf einem Niveau von 0,001, (Anova, F-Test). Die Unterschiede zw. erster und zweiter Einkommensgruppe sind nicht signifikant.

\(^{28}\) Die Unterschiede bzgl. Armutsgefährdung sind signifikant auf einem Niveau von 0,01, (Anova, F-Test), bzgl. Energiearmut auf einem Niveau von 0,001 (Anova, F-Test).

\(^{29}\) Die Gesamtunterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test). Die Unterschiede zw. 111-140m\(^2\) und 141-170m\(^2\) sind nicht signifikant.

Grafik 4.11
Jährliche Gesamtenergiekosten nach Gebäudegröße und Rechtsverhältnis

Q: STATISTIK AUSTRIA.

Grafik 4.12
Jährliche Gesamtenergiekosten von Gebäuden mit 1 bis 2 Wohnungen nach Haushaltseinkommensgruppen

Q: STATISTIK AUSTRIA.

4.1.3 Relative Energiekosten

Zur Einschätzung der Belastung von Haushalten durch Energiekosten ist auch eine relative Betrachtung der Energiekosten als Anteil am gesamten verfügbaren Haushaltseinkommen wesentlich. Durchschnittlich wenden Haushalte 4,2% ihres Haushaltseinkommens für Energiekosten für Wohnen (Warmwasser, Heizen etc.) auf32. Haushalte mit niedrigem Haushaltseinkommen geben durchschnittlich 7,9% ihres Einkommens für Energie für Wohnen aus, Haushalte mit mittlerem Einkommen 4,7% und Haushalte mit hohem Einkommen 2,8% (Grafik 4.13).

Grafik 4.13
Anteil der Gesamtenergiekosten am Haushaltseinkommen nach Haushaltseinkommensgruppen

Q: STATISTIK AUSTRIA.

30 Alle Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
31 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
32 EU-SILC weist im Durchschnitt 5% Energiekosten als Anteil am Einkommen aus (Median: 4%).
Dies weist auch auf die geringere Nachfrageelastizität der Energiekosten hin – sind doch die Einkommen obersten Einkommensterzil rund viermal höher als im untersten Terzil, während die Energiekosten des oberen Terzils nur um knapp 45% höher sind als bei Haushalten mit niedrigem Einkommen (siehe auch Zucha et al., 2015, S. 55).

Armutsgefährdete Haushalte geben im Durchschnitt 11,2% ihres Einkommens für Energie für Wohnen aus, während der Durchschnitt aller Haushalte bei 4,2% liegt. Energiearme Haushalte wenden 20% ihres Einkommens für Energie für Wohnen auf (Grafik 4.14).

Grafik 4.14
Anteil der Gesamtenergiekosten am Haushalteinkommen nach Armutsgefährdung und Energiearmut

Q: STATISTIK AUSTRIA.

4.1.4 Gesamtzusammenhang Energiekosten

Mittels multivariaten Regressionsmodells wurde der Einfluss des Einkommens sowie weiterer energieverbrauchsrelevanter Merkmale auf die Energiekosten insgesamt untersucht (siehe Übersicht 4.2).

Der Gesamtzusammenhang der Prädiktorvariablen und der Energiekosten ist signifikant (Signifikanzniveau 0,001). Die ausgewählten Variablen erklären 28% der Varianz der Gesamtenergiekosten. Der Einfluss eines Großteils der ausgewählten Variablen ist signifikant, d.h. sie tragen über die anderen Variablen hinaus zur Erklärung der Varianz bei.

Den stärksten Einfluss zeigt die Nutzfläche mit einem standardisierten Korrelationskoeffizienten von 0,327. Je größer die Nutzfläche der Wohnung, desto höher die Energiekosten. Das Errichtungsjahr des Wohngebäudes ist negativ mit den Energiekosten korreliert, d.h. je jünger ein Gebäude ist, desto geringer sind die Energiekosten. Auch das gesamte verfügbare Haushalteinkommen leistet einen signifikant positiven, wenn auch schwachen Beitrag zur Erklärung der Energiekosten (Niveau 0,001). Schulbildung und Bevölkerungsdichte (Urbanisierungsgrad) tragen dagegen nicht signifikant zur Erklärung der Varianz der Energiekosten bei.

Übersicht 4.2
Multivariate Regressionsanalyse zu den Gesamtenergiekosten

<table>
<thead>
<tr>
<th>Modelzusammenfassung</th>
<th>Model</th>
<th>R</th>
<th>Korrigiertes R-Quadrat</th>
<th>Standardfehler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothese 1</td>
<td>0,532</td>
<td>0,283</td>
<td>742,625</td>
<td></td>
</tr>
<tr>
<td>Varianzanalyse ANOVA</td>
<td>F-Wert</td>
<td>Signifikanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression</td>
<td>423,053</td>
<td>0,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geschätzte Regressionskoeffizienten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standar</td>
<td>t-Wert</td>
<td>Signifikanz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>disier</td>
<td>Beta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Konstante)</td>
<td>35,841</td>
<td>0,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamtes verfügbares Haushalteinkommen</td>
<td>0,038</td>
<td>3,484</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Höchste abgeschlossene Schulbildung des Haushalts</td>
<td>0,016</td>
<td>1,594</td>
<td>0,111</td>
<td></td>
</tr>
<tr>
<td>Bevölkerungsdichte</td>
<td>-0,007</td>
<td>-0,668</td>
<td>0,504</td>
<td></td>
</tr>
<tr>
<td>Haushaltsgröße</td>
<td>0,217</td>
<td>20,309</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Anzahl der Wohnungen im Gebäude</td>
<td>-0,050</td>
<td>-3,889</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Wohnung: Rechtsverhältnis des HH</td>
<td>0,033</td>
<td>2,864</td>
<td>0,004</td>
<td></td>
</tr>
<tr>
<td>Wohnung: Nutzfläche</td>
<td>0,327</td>
<td>26,191</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Errichtungsjahr des Wohnhauses (Baujahr)</td>
<td>-0,262</td>
<td>-27,609</td>
<td>0,000</td>
<td></td>
</tr>
<tr>
<td>Abhängige Variable: Energiekosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q: STATISTIK AUSTRIA. Für die Merkmalsausprägungen der Variablen siehe Übersicht 4.1.

Die multivariate Regressionsanalyse bestätigt damit, dass der Einfluss des Einkommens auf die Energiekosten über alle anderen energieverbrauchsrelevanten Variablen hinweg signifikant ist. Die Annahme „Je höher das verfügbare Einkommen einer Person ist, desto höher sind ihre Energiekosten“ kann daher auch durch die Regressionsanalyse bestätigt werden.

4.2 Stromverbrauch und Stromkosten

Die Ergebnisse des MZ-Energie 2015/16 zeigen, dass auf Einzelenerytärgerebene der elektrische Strom die wesentlichste Energieform für
Haushalte darstellt. Strom liegt mit einem Anteil von rund einem Viertel an der Gesamtenergie an erster Stelle der Energieträger.33

Die nachfolgenden Auswertungen weisen signifikante Unterschiede der Höhe des Stromverbrauchs und der Stromkosten nach den betrachteten Einkommensgruppen aus. Zusätzlich werden wieder energieverbrauchsrelevante Variablen wie die Nutzfläche der Wohnung oder die Haushaltsgröße in die Analysen einbezogen.

Übersicht 4.3
Korrelation diverser Variablen mit Stromverbrauch und Stromkosten insgesamt

<table>
<thead>
<tr>
<th>Variable</th>
<th>Merkmalsausprägung</th>
<th>Stromverbrauch insgesamt Korrelationskoeffizient</th>
<th>Stromkosten insgesamt Korrelationskoeffizient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtes verfügbares Haushaltseinkommen</td>
<td>in Euro</td>
<td>0,186</td>
<td>0,159</td>
</tr>
<tr>
<td>Äquivalenzeinkommen</td>
<td>in Euro</td>
<td>0,036</td>
<td>0,028</td>
</tr>
<tr>
<td>Haushalt unter der Armutsgefährdungsgrenze</td>
<td>0 Nein / 1 Ja</td>
<td>-0,026</td>
<td>-0,027</td>
</tr>
<tr>
<td>Energiearm</td>
<td>0 Nein / 1 Ja</td>
<td>0,051</td>
<td>0,057</td>
</tr>
<tr>
<td>Höchste abgeschlossene Schulbildung</td>
<td>1 Pflichtschule/keine Pflichtschule / 2 Lehrabschluss (Berufsschule) / 3 Berufsbild. mittlere Schule (ohne Berufsschule) / 4 Allgemeinbildende höhere Schule / 5 Berufsbild. höhere Schule (inkl. Lehrg., Kolleg) / 6 Universität, Fachhochschule</td>
<td>0,003</td>
<td>-0,007</td>
</tr>
<tr>
<td>Bevölkerungsdichte</td>
<td>0 Niedrige und mittlere Bevölkerungsdichte / 1 Hohe Bevölkerungsdichte</td>
<td>-0,216</td>
<td>-0,206</td>
</tr>
<tr>
<td>Haushaltsgröße</td>
<td>Anzahl der Personen (6 und mehr)</td>
<td>0,322</td>
<td>0,290</td>
</tr>
<tr>
<td>Anzahl der Wohnungen im Gebäude</td>
<td>0 Ein- oder Zweifamilienhäuser / 1 3 oder mehr Wohnungen</td>
<td>-0,276</td>
<td>-0,249</td>
</tr>
<tr>
<td>Wohnung: Rechtsverhältnis des HH</td>
<td>0 Eigentum / 1 Nicht-Eigentum (entgeltliches oder unentgeltl. Rechtsverhältnis)</td>
<td>-0,254</td>
<td>-0,230</td>
</tr>
<tr>
<td>Wohnung: Nutzfläche</td>
<td>In m²</td>
<td>0,251</td>
<td>0,212</td>
</tr>
<tr>
<td>Baujahr des Gebäudes</td>
<td>1 Bis 1960 / 2 1961 bis 1990 / 3 1991 bis 2005 / 4 Ab 2006</td>
<td>0,005</td>
<td>-0,004</td>
</tr>
</tbody>
</table>

Korrelationskoeffizient nach Spearman
Korrelationskoeffizient nach Pearson

Q: STATISTIK AUSTRIA, alle gezeigten Variablen mit Ausnahme des Baujahrs sind signifikant mit Energieverbrauch und Energiekosten korreliert (Niveau 0,001). Ordinal skalierte Variablen (Schulbildung, Haushaltsgröße, Baujahr) werden wie metrische Variablen behandelt.

Haushalte unter der Armutsgefährdungsgrenze sind negativ mit den Variablen Stromverbrauch und Stromkosten korreliert, d.h. sie haben einen signifikant niedrigeren Verbrauch bzw. niedrigere Kosten als

http://www.statistik.at/web_de/statistiken/energie_umwelt_innovation_mobilitaet/energie_und_umwelt/energie/energieeinsatz_der_haushalte/index.html
die Vergleichsgruppe der nicht-armutsgefährdeten Haushalte. Umgekehrt verhält es sich bei energiearmen Haushalten; sie haben einen höheren Stromverbrauch und höhere Stromkosten als die nicht-energiearmen Haushalte.

4.2.1 Stromverbrauch der Haushalte

Der Stromverbrauch der österreichischen Haushalte insgesamt liegt jährlich bei knapp 4.400 kWh34. Wie Grafik 4.15 zeigt, ist der Stromverbrauch bei Haushalten mit niedrigem Haushaltseinkommen deutlich geringer als bei Haushalten mit mittlerem und hohem Haushaltseinkommen. Während ersteren im Durchschnitt 3.622 kWh Strom pro Jahr benötigen, verbrauchen Haushalte mit mittlerem Haushaltseinkommen 4.429 kWh, die Gruppe der hohen Einkommen kommt auf 5.174 kWh35.

Grafik 4.15
Jahresstromverbrauch nach Haushaltsseinkommensgruppen

Bezieht man durch die Betrachtung der Äquivalenzeinkommen die Haushaltsgröße wieder mit ein, sind die Unterschiede jedoch nicht mehr statistisch signifikant (Grafik 4.17). Haushalte mit niedrigem Äquivalenzeinkommen verbrauchen jährlich 4.367 kWh Strom, die mittlere Gruppe 4.299 kWh und die hohe Gruppe benötigt 4.466 kWh pro Jahr. Armutsgefährdete Haushalte (4.368 kWh) zeigen ebenfalls einen durchschnittlichen Stromverbrauch37. Hingegen beträgt der Strombedarf energieärmerer Haushalte im Schnitt 5.657 kWh pro Jahr.

Grafik 4.16
Jahresstromverbrauch nach Haushaltsgröße

Grafik 4.17
Jahresstromverbrauch nach Äquivalenzeinkommen, Armutsgefährdung und Energiearmut

Nach der Gebäudegröße (1 bis 2 Wohnungen oder größer), der Nutzfläche sowie dem Rechtsverhältnis

34 Mikrozensus Energie mit Datenstand Februar 2019 und neuer Gewichtung.
35 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
36 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
37 Die Unterschiede nach Äquivalenzeinkommen und Armutsgefährdung sind nicht signifikant, jene nach Energiearmut auf einem Niveau von 0,001 (Anova, F-Test).
an der Wohnung (Eigentum oder nicht) sind unterschiedliche Stromverbräuche sichtbar (Grafik 4.18 und 4.19). Nur nach dem Alter der Wohngebäude (Baujahr) sind keine signifikant unterschiedlichen Stromverbräuche nachweisbar.

Grafik 4.18
Jährlicher Stromverbrauch nach Nutzfläche der Wohnung

Q: STATISTIK AUSTRIA.

Während Haushalte in kleinen Wohnungen bis 50 m² rund 3.217 kWh Strom verbrauchen, steigt dieser Wert mit der Wohnungsgröße deutlich an. Haushalte in Wohnungen von 81 bis 110 m² benötigen rund 35% mehr (4.362 kWh). Jene in sehr großen Wohnungen (über 170 m²) setzten jährlich durchschnittlich 6.314 kWh Strom ein.

Grafik 4.19
Jahresstromverbrauch nach Gebäudegröße und Rechtsverhältnis

Q: STATISTIK AUSTRIA.

Haushalte in Ein- und Zweifamilienhäusern benötigen durchschnittlich knapp 5.057 kWh Strom pro Jahr, jene in größeren Gebäuden knapp 3.716 kWh. Haushalte in Eigentumswohnungen haben einen durchschnittlichen Stromverbrauch von 5.002 kWh, jene in Wohnungen mit entgeltlichen oder unentgeltlichen Rechtsverhältnissen (Miete) verbrauchen 3.692 kWh.

Betrachtet man nur die Haushalte in Ein- und Zweifamilienhäusern, sind weiterhin wesentliche Unterschiede nach den Einkommensgruppen vorhanden (Grafik 4.20). Die Gruppe mit niedrigem Haushaltsinkommen verbraucht jährlich durchschnittlich knapp 4.245 kWh Strom und liegt damit deutlich unter dem Durchschnitt von 5.057 kWh. Die Haushalte mit mittlerem Einkommen liegen bei 4.981 kWh, jene mit hohem Einkommen bei 5.663 kWh. Auch für energiearme Haushalte sind signifikante Unterschiede im Stromverbrauch zur Vergleichsgruppe nachweisbar. Nach den Äquivalenzeinkommensgruppen und für die armutgefährdeten Haushalte (ja/nein) zeigen sich keine signifikanten Differenzen im Stromverbrauch.

Grafik 4.20
Jahresstromverbrauch von Gebäuden mit 1 bis 2 Wohnungen nach Haushaltseinkommensgruppen

Q: STATISTIK AUSTRIA.

4.2.2 Stromkosten der Haushalte

Die Stromkosten der österreichischen Haushalte belaufen sich laut MZ-Energie 2015/2016 jährlich auf 856 Euro.

Den vorangehenden Darstellungen des Stromverbrauchs der Haushalte nach Einkommensgruppen folgend lassen sich auch die jährlichen Stromkosten der Haushalte darstellen. Wie Grafik 4.21 zeigt, unter-

Haushalte in kleinen Wohnungen bis 50 m² haben durchschnittliche jährliche Stromkosten von 632 Euro, in Wohnungen von 51 bis 80 m² werden 702 Euro ausgegeben. Sehr große Wohnungen mit mehr als 170 m² haben durchschnittliche Kosten von 1.172 Euro zu begleichen (Grafik 4.24).

42 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
43 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
44 Die Unterschiede nach Äquivalenzeinkommen und Armutsgefährdung sind nicht signifikant, jene nach Energiearmut auf einem Niveau von 0,001 (Anova, F-Test).
45 Die Gesamtunterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test). Unterschiede zw. 111-140m² und 141-170m² sind nicht signifikant.
Haushalte in Ein- oder Zweifamilienhäusern geben durchschnittlich 954 Euro pro Jahr für den Strom aus, für Wohnungen in größeren Gebäuden liegt der Wert bei 740 Euro (Grafik 4.25). Auch die Stromkosten für Eigentumswohnungen sind mit 944 Euro höher als jene für Nicht-Eigentum (737 Euro)\(^\text{46}\). Nach dem Alter der Wohngebäude (Baujahr) gibt es keine signifikant unterschiedlichen Stromkosten.

Grafik 4.25
Jahresstromverbrauch nach Gebäudegröße, Rechtsverhältnis und Baujahr

Nach den Äquivalenzeinkommensgruppen und für die armutsgefährdeten Haushalte (ja/nein) zeigen sich keine signifikanten Differenzen in den Stromkosten. Für energiearme Haushalte sind signifikante Unterschiede zur Vergleichsgruppe nachweisbar \(^\text{48}\).

Grafik 4.26
Jahresstromkosten von Gebäuden mit 1 bis 2 Wohnungen nach Haushaltseinkommensgruppen

4.2.3 Relative Stromkosten

Relativ betrachtet geben Haushalte in Österreich durchschnittlich 2% ihres gesamten verfügbaren Haushaltseinkommens für Strom aus. Dabei verwenden Haushalte mit niedrigem Haushaltseinkommen durchschnittlich 3,7% ihres Einkommens für elektrischen Strom, Haushalte mit mittlerem Einkommen 2,2% und Haushalte mit hohem Einkommen 1,3% (Grafik 4.27).

Grafik 4.27
Anteil der Gesamtstromkosten am Haushaltseinkommen nach Haushaltseinkommensgruppen

Armutsgefährdete Haushalte geben im Durchschnitt 5,5% ihres Einkommens für elektrischen Strom aus. Energiearme Haushalte wenden 9,2% ihres Einkommens für elektrischen Strom auf.

\(^{46}\) Alle Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).

\(^{47}\) Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).

\(^{48}\) Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
4.2.4 Gesamtzusammenhang Stromkosten

Der Einfluss des Einkommens sowie weiterer energieverbrauchsrelevanter Merkmale auf die Stromkosten insgesamt wurde wieder mit einem multivariaten Regressionsmodell untersucht (siehe Übersicht 4.4).

Der Gesamtzusammenhang der Prädiktorvariablen und der Stromkosten ist signifikant (Signifikanzniveau 0,001). Die ausgewählten Variablen erklären 10% der Varianz der Gesamtstromkosten. Der Einfluss eines Großteils der ausgewählten Variablen ist signifikant, d.h. sie tragen über die anderen Variablen hinaus zur Erklärung der Varianz bei (Ausnahme: Schulbildung, Anzahl der Wohnungen im Gebäude und Rechtsverhältnis an der Wohnung).

Den stärksten Einfluss auf die Stromkosten zeigt die Haushaltsgröße mit einem standardisierten Korrelationskoeffizienten von 0,243. Je mehr Personen im Haushalt leben, desto höher die Stromkosten. Die Nutzfläche der Wohnung ist ebenfalls positiv mit den Stromkosten korreliert. Auch das gesamte verfügbare Haushaltseinkommen leistet einen signifikant positiven, wenn auch schwachen Beitrag zur Erklärung der Energiekosten (Niveau 0,05).

Die multivariate Regressionsanalyse bestätigt damit, dass der Einfluss des Einkommens auf die Stromkosten über alle anderen energieverbrauchsrelevanten Variablen hinweg schwach signifikant ist. Die Annahme „Je höher das verfügbare Einkommen einer Person ist, desto höher sind ihre jährlichen Stromkosten“ kann daher auch durch die Regressionsanalyse bestätigt werden.

4.3 Naturgas

Die Ergebnisse des MZ-Energie 2015/16 weisen auf Einzelenergieträgerere Naturgas nach elektrischem Strom sowie Brennholz als dritthäufigste Energieform für Haushalte aus.

Im nachfolgenden Kapitel werden nur Haushalte, die tatsächlich Naturgas verbrauchen, betrachtet.

Übersicht 4.5
Korrelation diverser Variablen mit Erdgasverbrauch und Erdgaskosten insgesamt

<table>
<thead>
<tr>
<th>Variable</th>
<th>Merkmalsausprägung</th>
<th>Erdgasverbrauch insgesamt Korrelationskoeffizient</th>
<th>Erdgaskosten insgesamt Korrelationskoeffizient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamtes verfügbares Haushaltseinkommen</td>
<td>in Euro</td>
<td>0,213</td>
<td>0,210</td>
</tr>
<tr>
<td>Äquivalenzeinkommen</td>
<td>in Euro</td>
<td>0,124</td>
<td>0,132</td>
</tr>
<tr>
<td>Haushalt unter der Armutsgefährdungsgrenze</td>
<td>0 Nein / 1 Ja</td>
<td>-0,011</td>
<td>-0,022</td>
</tr>
<tr>
<td>Energiearm</td>
<td>0 Nein / 1 Ja</td>
<td>0,126</td>
<td>0,137</td>
</tr>
<tr>
<td>Höchste abgeschlossene Schulbildung</td>
<td>1 Pflichtschule/keine Pflichtschule / 2 Lehrabschluss (Berufsschule) / 3 Berufsbild. mittlere Schule (ohne Berufsschule) / 4 Allgemeinbildende höhere Schule / 5 Berufsbild. höhere Schule (inkl. Lehrg., Kolleg) / 6 Universität, Fachhochschule</td>
<td>0,096</td>
<td>0,102</td>
</tr>
<tr>
<td>Bevölkerungsdichte</td>
<td>0 Niedrige und mittlere Bevölkerungsdichte / 1 Hohe Bevölkerungsdichte</td>
<td>-0,126</td>
<td>-0,135</td>
</tr>
<tr>
<td>Haushaltsgröße</td>
<td>Anzahl der Personen (6 und mehr)</td>
<td>0,207</td>
<td>0,193</td>
</tr>
<tr>
<td>Anzahl der Wohnungen im Gebäude</td>
<td>0 Ein- oder Zweifamilienhäuser / 1 3 oder mehr Wohnungen</td>
<td>-0,406</td>
<td>-0,406</td>
</tr>
<tr>
<td>Wohnung: Rechtsverhältnis des HH</td>
<td>0 Eigentum / 1 Nicht-Eigentum (entgeltliches oder unentgeltl. Rechtsverhältnis)</td>
<td>-0,262</td>
<td>-0,268</td>
</tr>
<tr>
<td>Wohnung: Nutzfläche</td>
<td>In m²</td>
<td>0,545</td>
<td>0,520</td>
</tr>
<tr>
<td>Baujahr des Gebäudes</td>
<td>1 Bis 1960 / 2 1961 bis 1990 / 3 1991 bis 2005 / 4 Ab 2006</td>
<td>-0,190</td>
<td>-0,183</td>
</tr>
</tbody>
</table>

Korrelationskoeffizient nach Spearman
Korrelationskoeffizient nach Pearson

Q: STATISTIK AUSTRIA, alle gezeigten Variablen mit Ausnahme des Baujahrs sind signifikant mit Energieverbrauch und Energiekosten korreliert (Niveau 0,001). Ordinal skalierte Variablen (Schulbildung, Haushaltsgröße, Baujahr) werden wie metrische Variablen behandelt.

4.3.1 Naturgasverbrauch der Haushalte

49 Mikrozensus Energie mit Datenstand Februar 2019 und neuer Gewichtung.
50 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).

Bezieht man durch die Betrachtung der Äquivalenzeinkommen die Haushaltsgröße wieder mit ein, bleiben die Unterschiede statistisch signifikant, wenn auch mit geringeren Differenzen (Grafik 4.31). Haushalte mit niedrigem Äquivalenzeinkommen verbrauchen jährlich 10.825 kWh Erdgas, die mittlere Gruppe 10.486 kWh und die hohe Gruppe benötigt 12.677 kWh pro Jahr. Armutsgefährdete Haushalte (11.910 kWh) haben einen leicht überdurchschnittlichen Erdgasverbrauch (11.396 kWh). Hingegen beträgt der Erdgasbedarf energieärmer Haushalte im Schnitt 21.176 kWh pro Jahr.

Beim Wohnungsgrößenverbrauch zeigt sich ein ähnlicher Trend (Grafik 4.32). Haushalte in kleinen Wohnungen bis 50 m² verbrauchen 7.068 kWh Erdgas, während Haushalte in kleinen Wohnungen bis 50 m² 7.068 kWh Erdgas verbrauchen, steigt dieser Wert mit der Wohnungsgröße deutlich an. Haushalte in Woh...

51 Die Gesamtdifferenzen sind signifikant auf einem Niveau von 0,001 (Anova, F-Test). Unterschiede zwischen der Personenanzahl zwei, drei, vier und sechs (und mehr) sind nicht signifikant. Ebenso sind Unterschiede zwischen elf und sechs (und mehr) nicht signifikant.

52 Die Gesamtdifferenzen sind signifikant auf einem Niveau von 0,001 (Anova, F-Test). Zwischen erster und zweiter Einkommensgruppe gibt es keine signifikanten Unterschiede.

53 Die Unterschiede nach Armutsgefährdung sind nicht signifikant, jene nach Energiearmut auf einem Niveau von 0,001 (Anova, F-Test).
nungen von 81 bis 110 m² benötigen 11.743 kWh. Jene in sehr große Wohnungen (über 170 m²) setzen jährlich durchschnittlich 21.503 kWh Erdgas ein54.

Haushalte in Ein- und Zweifamilienhäusern benötigen durchschnittlich knapp 15.290 kWh Erdgas pro Jahr, jene in größeren Gebäuden knapp 8.872 kWh. Haushalte in Eigentumswohnungen haben einen durchschnittlichen Erdgasverbrauch von 13.762 kWh, jene in Wohnungen mit entgeltlichen oder unentgeltlichen Rechtsverhältnissen (Miete) verbrauchen 9.352 kWh. Der Erdgasverbrauch variiert stark über das Baujahr, wobei der Gasverbrauch von Haushalten in Gebäuden ab 2006 nur 62% von Haushalten in Gebäuden bis 1960 beträgt55.

Grafik 4.33
Jahresgasverbrauch nach Gebäudegröße, Rechtsverhältnis und Baujahr

Betrachtet man nur die Haushalte in Ein- und Zweifamilienhäusern, sind kaum Unterschiede nach den Einkommensgruppen vorhanden (Grafik 4.34). Die Gruppe mit niedrigem Haushaltseinkommen verbraucht jährlich durchschnittlich 15.583 kWh Erdgas. Die Haushalte mit mittlerem Einkommen liegen bei 14.311 kWh, jene mit hohem Einkommen bei 15.837 kWh56.

Grafik 4.34
Jahresgasverbrauch von Gebäuden mit 1 bis 2 Wohnungen nach Haushaltseinkommensgruppen

Q: STATISTIK AUSTRIA.

4.3.2 Naturgaskosten der Haushalte

Den vorangehenden Darstellungen des Erdgasverbrauchs der Haushalte nach Einkommensgruppen folgend lassen sich auch die jährlichen Erdgaskosten der Haushalte darstellen (betrachtet werden wieder nur Haushalte, die tatsächlich Erdgaskosten aufweisen). Wie Grafik 4.35 zeigt, unterscheiden sich die Jahrestgaskosten der Haushalte nach den Einkommenssterzilen. Während der durchschnittliche Haus- halt knapp 880 Euro Erdgaskosten jährlich aufweist57, liegen die Kosten für Haushalte mit niedrigem Einkommen bei 734 Euro. Haushalte mit mittlerem Einkommen geben 913 Euro für Erdgas aus, jene mit hohem Einkommen 1.041 Euro58.

54 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
55 Alle Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).
56 Die Unterschiede sind signifikant auf einem Niveau von 0,05 (Anova, F-Test).
57 Mikrozensus Energie mit Datenstand Februar 2019 und neuer Gewichtung.
58 Die Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).

Haushalte in kleinen Wohnungen bis 50 m² haben durchschnittliche jährliche Erdgaskosten von 525 Euro, in Wohnungen von 51 bis 80 m² werden 656 Euro ausgegeben. Sehr große Wohnungen mit mehr als 170 m² haben durchschnittliche Kosten von 1.678 Euro zu begleichen (Grafik 4.38).

60 Die Gesamtunterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test). Zwischen erster und zweiter Einkommensgruppe gibt es keine signifikanten Unterschiede.
61 Die Unterschiede nach Armutsgefährdung sind nicht signifikant, jene nach Energiearmut auf einem Niveau von 0,001 (Anova, F-Test).

Die Haushalte mit mittlerem Einkommen benötigen 1.099 Euro, jene mit hohem Einkommen geben 1.237 Euro aus.

4.3.3 Relative Erdgaskosten

Relativ betrachtet geben Haushalte in Österreich durchschnittlich 2% ihres gesamten verfügbaren Haushaltseinkommens für Erdgas aus. Dabei verwenden Haushalte mit niedrigem Haushaltseinkommen durchschnittlich 3,8% ihres Einkommens für Erdgas, Haushalte mit mittlerem Einkommen 2,3% und Haushalte mit hohem Einkommen 1,4% (Grafik 4.41).

Alle Unterschiede sind signifikant auf einem Niveau von 0,001 (Anova, F-Test).

Die Unterschiede sind signifikant auf einem Niveau von 0,05 (Anova, F-Test) und sind getrieben von den Unterschieden zw. dem zweiten und dritten Terzil.
Armutsgefährdete Haushalte geben im Durchschnitt 6% ihres Einkommens für Erdgas aus. Energiearme Haushalte wenden 14,1% ihres Einkommens für Erdgas auf.

4.3.4 Gesamtzusammenhang Erdgaskosten

Der Einfluss des Einkommens sowie weiterer energieverbrauchsrelevanter Merkmale auf die Erdgaskosten insgesamt wurde wieder mit einem multivariaten Regressionsmodell untersucht (siehe Übersicht 4.6).

Der Gesamtzusammenhang der Prädictorvariablen und der Erdgaskosten ist signifikant (Signifikanzniveau 0,001). Die ausgewählten Variablen erklären 35% der Varianz der Erdgaskosten. Der Einfluss von Anzahl der Wohnungen im Gebäude, Nutzfläche und Baujahr ist signifikant, d. h. sie tragen über die anderen Variablen hinaus zur Erklärung der Varianz bei.

Den stärksten Einfluss auf die Erdgaskosten zeigt die Nutzfläche mit einem standardisierten Korrelationskoefzienten von 0,472. Je größer die Wohnungsfläche, desto höher die Erdgaskosten.

Das gesamte verfügbare Haushaltseinkommen leistet keinen signifikant Beitrag zur Erklärung der Erdgaskosten. Die Annahme „Je höher das verfügbare Einkommen einer Person ist, desto höher sind ihre jährlichen Erdgaskosten“ kann daher durch die Regressionsanalyse nicht bestätigt werden.

Übersicht 4.6
Multivariate Regressionsanalyse zu den Gesamtenergiekosten

<table>
<thead>
<tr>
<th>Modellzusammenfassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>R</td>
</tr>
<tr>
<td>Hypothese 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Varianzanalyse ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-Wert</td>
</tr>
<tr>
<td>Regression</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geschätzte Regressionskoeffizienten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standar-disierte Koeffizienten Beta t-Wert</td>
</tr>
<tr>
<td>(Konstante)</td>
</tr>
<tr>
<td>Gesamtes verfügbares Haushaltseinkommen</td>
</tr>
<tr>
<td>Höchste abgeschlossene Schulfüllung des Haushalts</td>
</tr>
<tr>
<td>Bevölkerungsdichte</td>
</tr>
<tr>
<td>Haushaltsgröße</td>
</tr>
<tr>
<td>Anzahl der Wohnungen im Gebäude</td>
</tr>
<tr>
<td>Wohnung: Rechtsverhältnis des HH</td>
</tr>
<tr>
<td>Wohnung: Nutzfläche</td>
</tr>
<tr>
<td>Errichtungsjahr des Wohnhauses (Baujahr)</td>
</tr>
</tbody>
</table>

Abhängige Variable: Erdgaskosten

Q: STATISTIK AUSTRIA. Für die Merkmalsausprägungen der Variablen siehe Übersicht 4.5.
5 Datenhintergrund und Methodik

Der vorliegende Bericht verwendet die Daten der Erhebungen Mikrozensus Energie64 für das Jahr 2015/2016 sowie EU-SILC 201765 mit Informationen zum Jahresereinkommen 2016. Zudem werden wesentliche Einkommenskomponenten aus Verwaltungsdaten herangezogen. Soziodemografische Variablen für den Mikrozensus Energie stammen aus der Mikrozensus Arbeitskräfteerhebung66.

Eine Verschneidung der Datensätze Mikrozensus Energie und EU-SILC bietet sich an: der Erhebungsumfang des Spenderdatensatzes EU-SILC mit rund 6.000 Haushalten ist ausreichend groß, um für jeden der rund 8.500 Fälle des Empfängerdatensatzes Mikrozensus Energie einen passenden Spender zu ermitteln.

5.1 Mikrozensus Sonderprogramm Energieeinsatz der Haushalte 2015/2016

Datenhintergrund und Methdik

Soziodemografische Variablen wie Geschlecht oder Schulbildung werden für den Mikrozensus Energie nicht gesondert erhoben, sondern stammen direkt aus der Mikrozensus Arbeitskräfteerhebung.

Das Einkommen der Haushalte ist nicht Teil der ursprünglichen Mikrozensus-Erhebung, nur das Unselbstständigen-Einkommen wird dem Datensatz aus Verwaltungsdaten zugefügt. Durch die Verwendung von Einkommens-Verwaltungsdaten sowie die darauf aufbauende Datenverschneidung (statisti-

5.2 EU-SILC Statistics on Income and Living Conditions

EU-SILC erhebt sämtliche Einkommenskomponenten auf Haushaltsebene (wie Familienbeihilfe oder Wohnbeihilfe) und Personenebene (Unselbständigen- und Selbständigen-Einkommen, Arbeitslosenleistungen, Pensionen etc.) und stellt damit österreichweit die einzige offizielle Quelle zum gesamten verfügbaren Haushaltseinkommen dar (siehe auch EU-SILC Standard-Dokumentation).

5.3 Mikrozensus Arbeitskräfte- und Wohnungserhebung 2016

69 http://www.statistik.at/web_de/statistiken/soziales/armut_und_soziale_eingliederung/index.html
68 Siehe auch Standard-Dokumentation Metainformationen (Definitionen, Erläuterungen, Methoden, Qualität) zu EU-SILC 2017.
69 Verordnung des Bundesministers für Arbeit, Soziales und Konsumentenschutz über die Statistik der Einkommen und Lebensbedingungen, BGBl. II Nr. 277/2010.
71 Siehe auch Standard-Dokumentation Metainformationen (Definitionen, Erläuterungen, Methoden, Qualität) zu EU-SILC 2017.
Haushalte, nur das Einkommen unselbständig Erwerbstätiger wird nachträglich aus Verwaltungsdaten erhoben.

Die Stichprobe des Mikrozensus setzt sich – wie bereits erwähnt - aus neun annähernd gleich großen Bundesland-Stichproben zusammen (Ausnahmen: Burgenland mit einem niedrigeren und Wien mit einem größeren Stichprobenumfang), die jeweils als zufällige, einstufige Wohnungsstichproben aus dem ZMR gezogen werden. Der gesamte Stichprobenumfang pro Quartal liegt bei brutto ca. 23.000 Wohnungen (Auswahlquote 0,6%).

5.4 Verwendete Einkommensvariablen

EU-SILC stellt österreichweit die offizielle Quelle zum gesamten verfügbaren Haushaltseinkommen dar. Der Mikrozensus erhebt dagegen bisher nur das Einkommen aus unselbständiger Erwerbstätigkeit nachträglich aus Verwaltungsdaten.

Das gesamte verfügbare Haushaltseinkommen wird in EU-SILC Großteils aus Verwaltungsdaten ermittelt. Das Selbständigeneinkommen, das Einkommen aus Vermietung und Verpachtung, Wohnungsbeihilfen u.a. werden dagegen direkt von den Haushalten mittels Stichprobenerhebung erfragt (Übersicht 5.1).

72 http://www.statistik.at/web_de/statistiken/arbeitsmarkt/index.html
73 Siehe auch Standard-Dokumentation Metainformationen (Definitionen, Erläuterungen, Methoden, Qualität) zu Mikrozensus ab 2004 Arbeitskräfte- und Wohnungserhebung.

Übersicht 5.1
Überblick Einkommensvariablen aus Verwaltungsdaten und Direktbefragung

<table>
<thead>
<tr>
<th>Summe in Mio. Euro</th>
<th>Anteil an HY020 in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>PY010 Unselbständigeneinkommen</td>
<td>93.571</td>
</tr>
<tr>
<td>+ PY050 Selbständigeneinkommen</td>
<td>12.466</td>
</tr>
<tr>
<td>+ PY090 Arbeitsloseneinkommen</td>
<td>4.340</td>
</tr>
<tr>
<td>+ PY100 Altersleistungen</td>
<td>35.440</td>
</tr>
<tr>
<td>+ PY110 Hinterbliebeneneinkommen</td>
<td>3.709</td>
</tr>
<tr>
<td>+ PY120 Krankenleistungen</td>
<td>929</td>
</tr>
<tr>
<td>+ PY130 Invaliditätsleistungen</td>
<td>2.514</td>
</tr>
<tr>
<td>+ PY140 Ausbildungsleistungen</td>
<td>251</td>
</tr>
<tr>
<td>+ PY080 Renten aus privaten Systemen</td>
<td>1.631</td>
</tr>
<tr>
<td>= Summe der Einkommen auf Personenebene</td>
<td>154.851</td>
</tr>
<tr>
<td>+ HY040 Einkommen aus Vermietung und Verpachtung</td>
<td>2.758</td>
</tr>
<tr>
<td>+ HY050 Familienleistungen</td>
<td>6.136</td>
</tr>
<tr>
<td>+ HY060 Sonstige Leistungen gegen soziale Ausgrenzung</td>
<td>1.065</td>
</tr>
<tr>
<td>+ HY070 Wohnungsbeihilfen</td>
<td>252</td>
</tr>
<tr>
<td>+ HY080 Erhaltene Transfers zwischen privaten Haushalten</td>
<td>1.689</td>
</tr>
<tr>
<td>+ HY090 Zinsen und Dividenden</td>
<td>1.141</td>
</tr>
<tr>
<td>+ HY110 Einkommen von Personen unter 16 Jahren</td>
<td>110</td>
</tr>
<tr>
<td>= Summe der Einkommen auf Haushaltsebene</td>
<td>13.151</td>
</tr>
<tr>
<td>- HY130 Geleistete Transfers zwischen privaten Haushalten</td>
<td>2.280</td>
</tr>
<tr>
<td>- HY145 Einkommensteuernachzahlungen/-erstattungen</td>
<td>-1.322</td>
</tr>
<tr>
<td>+ HY200 Verfügbares Haushaltseinkommen</td>
<td>167.044</td>
</tr>
</tbody>
</table>

Q: STATISTIK AUSTRIA, EU-SILC 2016. - Blau markiert sind Einkommenskomponenten, für die keine Verwaltungsdaten verwendet werden

5.4.1 Gesamtes verfügbares Haushaltseinkommen laut EU-SILC
Das Haushaltseinkommen aus EU-SILC entspricht der Summe aller ermittelten Einkommenskomponenten im jeweiligen Haushalt. EU-SILC erhebt, wie erwähnt, alle relevanten Einkommenskomponenten auf Haushaltsebene (wie Familienbeihilfe oder staatliche Beihilfen zu Wohnkosten) und Personenebene (Unselbständigen- und Selbständigen-Einkommen, Vermögenseinkommen, Krankengeld, Sozialhilfe, Arbeitslosenleistungen, Pensionen etc.) entweder aus Verwaltungsdaten oder mittels Befragung (siehe Übersicht 5.1).

Ausnahmen bilden die Komponenten imputierte Mieten, Zinszahlungen für Hypotheken, Eigenverbrauch und Arbeitgeberbeiträge zur Sozialversicherung, welche entsprechend der Vorgaben von Eurostat nicht in die Berechnung des Haushaltseinkommens einbezogen werden.

75 Weitere Informationen liefert die EU-SILC Standard-Dokumentation ab Seite 20: Standard-Dokumentation Metainformationen (Definitionen, Erläuterungen, Methoden, Qualität) zu EU-SILC 2017, Bearbeitungsstand: 30.04.2018.
Laut EU-SILC 2017 verfügen private Haushalte in Österreich im Mittel über 34.911 Euro Haushaltseinkommen pro Jahr. 10% der Haushalte haben weniger als 14.313 Euro und 10% haben mehr als 71.707 Euro pro Jahr zur Verfügung\(^76\).

5.4.2 Äquivalisierter Nettohaushaltseinkommen

Das Äquivalenzzinkommen (auch „äquivalisierter Haushaltseinkommen“) stellt das nach Haushaltsgröße gewichtete verfügbare Haushaltseinkommen dar. Die Gewichtung wird auf Basis der so genannten EU-Skala (modifizierte OECD-Skala) berechnet, das verfügbare Haushaltseinkommen wird dabei durch die Summe der Gewichte je Haushalt dividiert.

Ein Haushalt mit Vater, Mutter und Kind (unter 14 Jahren) hätte somit ein errechnetes Konsumäquivalent von 1,8 gegenüber einem Einpersonenhaushalt. Würde dieser (fiktive) Haushalt über ein gesamtes verfügbares Haushaltseinkommen von 2.000 Euro verfügen, könnte dementsprechend ein Äquivalenzinkommen von 1.111 Euro berechnet werden.

Das äquivalisierte Nettohaushaltseinkommen dient als Grundlage für die Berechnung der Armutsgefährdung (siehe Kapitel 2.1).

Laut EU-SILC 2017 stehen (für das Einkommensjahr 2016) 50% der Bevölkerung in Privathaushalten mehr als 23.694 Euro äquivalisierter Nettohaushaltseinkommen jährlich zur Verfügung (Median). Das oberste Einkommenszehntel verfügt über ein äquivalisiertes Nettohaushaltseinkommen von mehr als 40.593 Euro, das unterste Einkommenszehntel (jeweils rund 860.000 Personen) hingegen über weniger als 12.783 Euro\(^77\).

5.5 Informationen zur deskriptiven Darstellung

5.5.1 Betrachtete Einkommensgruppen

Die Energievariablen werden nach drei Einkommensgruppen (niedriges, mittleres und hohes Haushaltseinkommen) analysiert. Diese werden aus den Terzilen\(^78\) der Variable „gesamtes verfügbares Haushaltseinkommen“ gebildet.

Um die Haushaltsgröße bei der Betrachtung nach dem Haushaltseinkommen mit einbeziehen, verwendet man das sogenannte Äquivalenzeinkommen (siehe Kapitel 5.5). Auch hier werden die Terzile der Variable gebildet.

Gezeigt wird darüber hinaus die Gruppe der armutsgefährdeten Haushalte (siehe Kapitel 2.1) sowie die Gruppe der energiearmen Haushalte. Diese beiden Variablen berücksichtigen durch ihre Äquivalisierung implizit, wie viele Personen in einem Haushalt leben.

5.5.2 Interpretation der ausgewiesenen Signifikanzniveaus

Zum Testen der Zusammenhänge der Variablen werden je nach Skalenniveau generell Chi-Quadrat-Test, ANOVA F-Test, Kendall’s-Tau-b sowie Regressionen verwendet. Außerdem werden Korrelationsanalysen nach Spearman oder Pearson durchgeführt.

Das Signifikanzniveau gibt die Wahrscheinlichkeit an, dass ein statistischer Zusammenhang gemessen wird, obwohl in der Grundgesamtheit kein Zusammenhang besteht, Variablen also unabhängig sind. Die Signifikanzniveaus 0,001, 0,01 und 0,05 werden ausgewiesen. „Die Unterschiede nach den Einkommensgruppen sind statistisch signifikant auf einem Niveau von 0,001 (ANOVA, F-Test)" bedeutet also, dass der F-Test bestätigt, dass die auftretenden Unterschiede zwischen niedrigen, mittleren und hohen Einkommensgruppen mit äußerst geringer Wahrscheinlichkeit zufällig sind. Überprüft wird dabei, ob sich mindestens zwei Gruppen statistisch signifikant unterscheiden. Der Test gibt keine Auskunft darüber, welche Gruppen dies sind.

\(^78\) Terzile teilen die größte geordnete Menge der Werte der Variable „gesamtes verfügbares Haushaltseinkommen“ in drei gleich große Abschnitte: unteres, mittleres und oberes Drittel.
Für die Signifikanzniveaus wird folgende Interpretation festgelegt:

- 0,001 = hohe Signifikanz
- 0,01 = mittlere Signifikanz
- 0,05 = geringe Signifikanz.

Werte über 0,05 sind als nicht signifikant definiert und werden nicht näher interpretiert.

Für die Berechnung der statistischen Signifikanzen werden jeweils die ungewichteten Werte der Stichprobe herangezogen.

5.5.3 Verwendetes Hochrechnungsgewicht

Summen und Anteile, wie sie in den Tabellen zu finden sind, beruhen auf gewichteten und hochgerechneten Daten. Für den Mikrozensus Energie werden für die Gewichtung der Daten zwei unterschiedliche Werte verwendet. Einerseits werden die Energiemengen für Kochen, Warmwasser und Sonstiges (Strom) speziell nach der Anzahl der Haushalte kalibriert. Die Daten zum Energieverbrauch für Heizzwecke werden dagegen anhand der Wohnfläche hochgerechnet.79

Für die Analysen wurde daraus ein Durchschnittsgewicht je Haushalt berechnet, welches sich aus dem gewichteten Gesamtennergieverbrauch der Haushalte errechnet. Die hochgerechneten Werte der Energieverbräuche weichen dadurch geringfügig von den offiziell ausgewiesenen Werte des Mikrozensus Energie ab. Die jeweiligen Abweichungen liegen durchwegs unter 1%, bei Solarwärme und Wärmepumpen unter 3% (siehe auch Übersicht 5.2).

Übersicht 5.2
Gesamtennergieverbrauch 2015/16 nach Energieträgern – Vergleich nach Hochrechnungsgewichten

<table>
<thead>
<tr>
<th>MZ-Energie 2015/16</th>
<th>Berechnung Energiearmut Gigawatt-stunden</th>
<th>Abweichung in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gigawatt-stunden</td>
<td>Anteile in %</td>
<td></td>
</tr>
<tr>
<td>Strom</td>
<td>16.900,00</td>
<td>25,3</td>
</tr>
<tr>
<td>Erdgas</td>
<td>11.900,00</td>
<td>17,8</td>
</tr>
<tr>
<td>Fernwärme (inkl. HZH)</td>
<td>8.080,00</td>
<td>12,1</td>
</tr>
<tr>
<td>Heizöl</td>
<td>10.550,00</td>
<td>15,8</td>
</tr>
<tr>
<td>Holz (Brennholz)</td>
<td>12.500,00</td>
<td>18,7</td>
</tr>
<tr>
<td>Solarwärme</td>
<td>1.480,00</td>
<td>2,2</td>
</tr>
<tr>
<td>Wärmepumpe</td>
<td>1.570,00</td>
<td>2,4</td>
</tr>
<tr>
<td>Kohle</td>
<td>190,00</td>
<td>0,3</td>
</tr>
<tr>
<td>Pellets, Holz-briketts, Hacks.</td>
<td>3.300,00</td>
<td>4,9</td>
</tr>
<tr>
<td>Flüssigas</td>
<td>270,00</td>
<td>0,4</td>
</tr>
<tr>
<td>Insgesamt</td>
<td>66.740</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Für die Darstellung der Energieverbräuche und Kosten nach verschiedenen Einkommensgruppen sind diese geringen Abweichungen nicht relevant.

5.6 „Statistical Matching“

Das Konzept des statistical Matching kann mit Hilfe von Regressions- oder Machine Learning Methoden auch erweitert werden, indem ein auf dem Spenderdatensatz geschätztes Modell auf dem Empfängerdatensatz angewandt wird, um die benötigten Variablen zu schätzen.

Es kann eine Vielzahl verschiedener Methoden zum statistical Matching verwendet werden, im Allgemeinen sind alle verfügbaren Imputationsmethoden mögliche Kandidaten für statistical Matching. Spenden-

79 Zum Zeitpunkt der Studie lagen zudem für den Mikrozensus Energie neue Hochrechnungsgewichte vor, die bereits in die aktuelle Studie eingeflossen, aber noch nicht veröffentlicht waren.
verfahren wie Nearest Neighbour (mit Hilfe einer Distanzfunktion) oder Hot-Deck (meist mit einer impliziten Distanzfunktion über die Sortierung des Datensatzes) verwenden dabei direkt Werte, die im Spenderdatensatz gefunden werden. Modellbasierte Verfahren, wie auch z. B. Tree-based Methoden, verwenden hingegen ein auf dem Spenderdatensatz geschätztes Modell, übertragen dieses auf dem Empfängerdatensatz und schätzen auf Basis dessen Werte für die gesuchten Variablen. Die Datenverknüpfung wurde vom Bereich Methodik der Statistik Austria vorgenommen.

Im Pilotprojekt 2017 (siehe auch Wegscheider-Pichler, 2017, Kapitel 7.2) wurden mehrere Versionen der Datenverknüpfung durchgeführt, um die beste Möglichkeit für die Verknüpfung des Einkommens mit den Mikrozensus Energie-Daten zu finden. Dabei wurde zusätzlich zur Nearest-Neighbour- Methode auch die Methode „Conditional Inference Tree“ angewendet. Bei der Datenevaluation stellte sich allerdings heraus, dass zwar die Schätzung des Einkommen durch diese Methode verbessert wurde, d. h. die Abweichungen (betrachtet auf dem Spenderdatensatz) des beobachteten Einkommens mit dem geschätzten Einkommen auf Einzelfallenebene geringer war, aber gerade in den für den Bericht wesentlichen unteren Einkommensdezilen eine stärkere Abweichung auf Verteilungsebene vom tatsächlichen Einkommen aus EU-SILC entstand.

Das statistical Matching welches schlussendlich verwendet wurde war daher ein Nearest-Neighbour Verfahren, wobei die in der Distanzfunktion verwendeten Variablen (und deren Gewichtung) auf Grund von Signifikanz-Tests bestimmt wurden.

Für den aktuellen Bericht wurde auf diese Erkenntnisse zurückgegriffen, es wurde daher wieder ein Nearest-Neighbour-Verfahren durchgeführt.

Um die Einhaltung der Geheimhaltungsrichtlinien zu gewährleisten, erfolgt die Zuordnung der Verwaltungsdaten zum Datensatz des Mikrozensus Energie mit einem von der Stammzahlenregisterbehörde generierten bereichsspezifischen Personenkennzeichen „Amtliche Statistik“ (bPK AS), welches keinerlei Rückschlüsse auf bestimmbare Personen ermöglicht.

Das gesamte verfügbare Haushaltseinkommen besteht damit aus Verwaltungsdaten plus einem mittels statistic Matching imputierten Rest (= zu verknüpfende Variable).

5.6.1 Variablenauswahl und Abgleich

Die Vergleichbarkeit und Homogenität der verwendeten Verknüpfungsvariablen in beiden Datenquellen (Mikrozensus Energie und EU-SILC) sind wesentliche Voraussetzungen für die Qualität des statistic Matching (siehe beispielsweise Eurostat 2013, S.13). Bei der Auswahl muss weiter die Relevanz der Variablen für die zu verknüpfende Variable (im gegebenen Fall Komponenten des Einkommens) mit beachtet werden. Zudem wurden energieverbrauchsrelevante Variablen (wie die Nutzfläche der Wohnung) mit berücksichtigt.

Verknüpfungsvariablen sind dabei jene Variablen, die für die Durchführung des statistic Matching herangezogen werden. Sie müssen einen Zusammenhang mit dem Haushaltseinkommen (zu verknüpfender Variable) aufweisen. Es handelt sich dabei zumeist um soziodemografische Variablen wie Haushaltsgröße oder Bildungsabschluss.

Eine sorgfältige Auswahl der Verknüpfungsvariablen und ein gründlicher inhaltlicher und methodischer Abgleich derselben sind entscheidend für eine sinnvolle Verschneidung zweier Datensätze.

Die Verknüpfungsvariable kann nur sinnvoll durchgeführt werden, wenn die Verknüpfungsvariablen auch möglichst nahe mit der zu verknüpfenden Variable (Haushaltseinkommen) zusammenhängen. Alle erhobenen Verknüpfungsvariablen sind in EU-SILC signifikant mit der zu verknüpfenden Variable Haushaltseinkommen korreliert, die Variablen konnten daher für das statistical Matching herangezogen werden.

Die folgende Übersicht 5.3 zeigt die Merkmalsausprägungen der verwendeten Verknüpfungsvariablen. Die Einkommensvariablen aus Verwaltungsdaten werden dabei nicht angeführt, hier werden Eurowerte verwendet.

Übersicht 5.3

<table>
<thead>
<tr>
<th>Verknüpfungsvariable</th>
<th>Merkmalsausprägung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haushaltseinkommen aus unselbständiger Erwerbstätigkeit (netto)</td>
<td>0 Keine unselbständige Erwerbstät. des Haushalts / Haushalts-Unselbständigen-Einkommen in Euro</td>
</tr>
<tr>
<td>Haushalt mit Einkommen aus selbständiger Erwerbstätigkeit</td>
<td>0 Nein / 1 Ja</td>
</tr>
<tr>
<td>Haushalt mit Pensionseinkommen</td>
<td>0 Nein / 1 Ja</td>
</tr>
<tr>
<td>Höchste abgeschlossene Schulbildung des Haushalts</td>
<td>1 Maximal Pflichtschule / 2 Lehre mit Berufsschule / 3 Fach- oder Handelschule / 4 Matura / 5 Anderer Abschluss nach der Matura / 6 Universität, (Fach-) Hochschule</td>
</tr>
<tr>
<td>Bevölkerungsdichte</td>
<td>0 Niedrige und mittlere Bevölkerungsdichte / 1 Hohe Bevölkerungsdichte</td>
</tr>
<tr>
<td>Haushaltsgröße</td>
<td>Anzahl (6 und mehr)</td>
</tr>
</tbody>
</table>

61 Der Mikrozensus Energie erhält, wie erwähnt, die siziodemografischen Merkmale aus der Mikrozensus Arbeitskräfteerhebung.
62 Korrelationskoeffizient nach Spearman’s Roh, statistisch signifikant auf einem Niveau von 0,001.
5.6.2 Vorgehen statistical Matching

Für das statistical Matching wurde für jeden Datensatz des Mikrozensus Energie ein Spender aus dem Datensatz EU-SILC mit minimaler Distanz der Verknüpfungsvariablen gesucht, um die neu generierte Variable der Differenz aus gesamten verfügbaren Haushaltseinkommen und Gesamteinkommen aus Verwaltungsdaten zu übertragen. Bei mehreren Spendern mit gleicher Distanz wurde einer zufällig ausgewählt.

Da die Einkommensvariablen aus den Verwaltungsdaten in beiden Erhebungen (EU-SILC und Mikrozensus Energie) in vergleichbarer Form vorhanden sind, konnten sie als zusätzliche Verknüpfungsvariablen verwendet werden. Dadurch konnte der Matchingprozess weiter verbessert werden, was eine sehr gute Annäherung der imputierten Werte an das tatsächliche gesamte Haushaltseinkommen zu erwarten lässt. Verknüpfungsvariablen des statistical Matching waren beispielsweise der Bildungsstand des Haushalts oder die Haushaltsgröße (siehe Grafik 5.1).

Die Verknüpfungsvariablen Haushaltsgröße, Nutzfläche sowie alle Einkommenswerte aus den Verwaltungsdaten gehen als numerische Größen in das Modell ein, die restlichen Variablen werden analog Variante 1 als ordinarne bzw. nominale Größen behandelt.

Die Merkmale wurden für den Matchingprozess unterschiedlich gewichtet. Während die Komponenten der Einkommen aus Verwaltungsdaten niedrig gewichtet wurden (Faktor 1) erhielten die Variablen „Gesamteinkommen aus Verwaltungsdaten“ sowie die Haushaltsgröße ein hohes Gewicht (Faktor 3). Die weiteren Variablen gingen mit mittlerer Gewichtung in das statistische Matching ein (Faktor 2).

Bei der Distanzfunktion handelt es sich um eine verallgemeinerte Variante der Gower-Distanz-Funktion, welche im Original kategorische und stetige Variablen behandeln kann. Die Erweiterung besteht in der Mög-

llichkeit ordinarne und semi-stetige Variable in der Distanzfunktion zu verwenden.

Die Distanz zwischen Beobachten i und j ist definiert durch folgende Formel

\[d_{i,j} = \frac{\sum_{k=1}^{p} w_k \delta_{i,j,k}}{\sum_{k=1}^{p} w_k} \]

wobei p die Anzahl der Distanzvariablen ist, \(w_k \) das Gewicht der jeweiligen Variable und \(\delta_{i,j,k} \) der Beitrag der k-ten Variable zur Distanz zwischen den Beobachtungen i und j.

Für stetige Variablen ist der Distanzbeitrag definiert als

\[\delta_{i,j,k} = |x_{i,k} - x_{j,k}| / r_k \]

wobei \(x_{i,k} \) und \(x_{j,k} \) der beobachtete Wert der Variable k bei Beobachtung i und j, r_k die Spannweite dieser Variable ist.

Für nominale Variablen ist der Distanzbeitrag definiert als

\[\delta_{i,j,k} = \begin{cases} 0 & \text{if } x_{i,k} = x_{j,k} \\ 1 & \text{if } x_{i,k} \neq x_{j,k} \end{cases} \]

Für semi-stetige Variablen ist der Distanzbeitrag eine Mischung aus der Funktion für nominale und stetige Variablen:

\[\delta_{i,j,k} = \begin{cases} 0 & \text{if } x_{i,k} = s_k \land x_{j,k} = s_k \\ 1 & \text{if } x_{i,k} \neq s_k \land x_{j,k} = s_k \\ 1 & \text{if } x_{i,k} = s_k \land x_{j,k} \neq s_k \\ |x_{i,k} - x_{j,k}| / r_k & \text{if } x_{i,k} \neq s_k \land x_{j,k} \neq s_k \end{cases} \]

5.6.3 Datenevaluation

Durch das eingangs beschriebene statistical Matching konnte dem Mikrozensus Energie zwar die Einkommensinformation aus EU-SILC zugeführt werden, doch liegt noch keine Information über die Qualität der Imputation vor.

Die folgende Grafik 5.2 zeigt die Verteilung des gesamten verfügbaren Haushaltseinkommens für das Datenfile Mikrozensus-Energie sowie die Originaldaten laut EU-SILC. Dabei zeigt sich eine sehr ähnliche Verteilung, wobei das Niveau der durch das Matching dem Mikrozensus Energie zugeführten Einkommensdaten konstant über den Originaldaten von EU-SILC liegt.

Die in Kapitel 4 gezeigten Ergebnisse zu Energieverbrauch und Energiekosten nach Einkommensgruppen bestätigen diese Annahmen. Haushalte mit niedrigem Haushaltseinkommen geben durchschnittlich rund 7,9% ihres Einkommens für Energie für Wohnen aus, Haushalte mit mittlerem Einkommen 4,7% und Haushalte mit hohem Einkommen 2,8%.
6 Literaturverzeichnis

Verordnung des Bundesministers für Arbeit, Soziales und Konsumentenschutz über die Statistik der Einkommen und Lebensbedingungen, BGBl. II Nr. 277/2010

